1
|
Chen Y, Petkov JT, Ma K, Li P, R P Webster J, Penfold J, Thomas RK, Allgaier J, Dalgliesh R, Smith G. Manipulating the hydrophilic / hydrophobic balance in novel cationic surfactants by ethoxylation: The impact on adsorption and self-assembly. J Colloid Interface Sci 2024; 674:405-415. [PMID: 38941934 DOI: 10.1016/j.jcis.2024.06.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
HYPOTHESIS Cationic surfactants have a wide range of applications, often associated with their affinity for a range of solid surfaces and their anti-microbial properties. Manipulating their adsorption and self-assembly properties is key to most applications, and this is commonly achieved through surfactant mixtures or manipulating their headgroup or alkyl chain structure. Achieving this through adjustments to their headgroup structure is less common in cationic surfactants than in anionic surfactants. Ethoxylation provides the ability to adjust the hydrophilic / hydrophobic balance, as extensively demonstrated in a range of anionic surfactants. EXPERIMENTS This same approach has been applied here to a range of ethoxylated cationic surfactants in the form of the quaternary ammonium salts, and their tertiary nonionic equivalents before quaternisation. Their adsorption and self-assembly properties are investigated using predominantly the neutron scattering techniques of neutron reflectivity, NR, and small angle neutron scattering, SANS. FINDINGS The trends in the adsorption at the air-water interface and the self-assembly in aqueous solution demonstrate how the hydrophilic / hydrophobic balance can be adjusted by varying the degree of ethoxylation and the alkyl chain length, and illustrate the degree of interdependence of the different structural changes. The variation in the adsorption and the micelle structure shows how the surfactant conformation / packing changes as the degree of ethoxylation and alkyl chain length increases and how the introduction of charge induces further changes.
Collapse
Affiliation(s)
- Y Chen
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, Didcot, OXON, UK
| | - J T Petkov
- Arxada, Muenchensteinerstrasse 38, CH-4002 Basel, Switzerland
| | - K Ma
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, Didcot, OXON, UK
| | - P Li
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, Didcot, OXON, UK.
| | - J R P Webster
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, Didcot, OXON, UK
| | - J Penfold
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, Didcot, OXON, UK; Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OXON, UK.
| | - R K Thomas
- Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OXON, UK
| | - J Allgaier
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information Processing (IBI-8), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - R Dalgliesh
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, Didcot, OXON, UK
| | - G Smith
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, Didcot, OXON, UK
| |
Collapse
|
2
|
Lang Y, Zhou J, Sun J, Liang H, Zhang K, Wang C, Liu Y, Geng T. Effect of Different Ethylene Oxide Addition Numbers on the Performance of Polyoxyethylene Tallow Amine as a Pesticide Emulsifier. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1503-1514. [PMID: 38156944 DOI: 10.1021/acs.langmuir.3c03269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Surfactant reduces the surface tension of liquids, resulting in improved emulsion stability, and there is great interest in pesticide additives. Ethoxylate is often used as a pesticide emulsifier. However, the degree of ethoxylation and the existence of dioxane byproducts can significantly affect the performance of emulsifiers. Here, a series of polyoxyethylene tallow amines with the addition of different numbers of ethylene oxide (EO) were synthesized and characterized. Their physical and chemical performances were measured. The ability of POEA as a surfactant to reduce water surface tension and the surface adsorption of molecules were assessed based on the static and dynamic surface tensions. The results show that the surfactant molecules preferentially form a saturated adsorption layer in solution, and the mixed-diffusion-kinetics mechanism dominates the adsorption process. With the increase of the EO addition number, the emulsifying property of POEA increases, while the wetting property gradually decreases and the contact angle increases. These results can provide a basis for the selection of pesticide additives. At the same time, the mechanism of removing dioxane by ethoxylate is described, and a simple and low-consumption method is put forward to reduce the dioxane content. It provides a new idea for the removal of dioxane.
Collapse
Affiliation(s)
- Yu Lang
- China Research Institute of Daily Chemical Industry, Taiyuan, Shanxi 030001, PR China
| | - Jingjie Zhou
- China Research Institute of Daily Chemical Industry, Taiyuan, Shanxi 030001, PR China
| | - Jinyuan Sun
- China Research Institute of Daily Chemical Industry, Taiyuan, Shanxi 030001, PR China
| | - Huibin Liang
- China Research Institute of Daily Chemical Industry, Taiyuan, Shanxi 030001, PR China
| | - Ke Zhang
- China Research Institute of Daily Chemical Industry, Taiyuan, Shanxi 030001, PR China
| | - Chunyu Wang
- China Research Institute of Daily Chemical Industry, Taiyuan, Shanxi 030001, PR China
| | - Yuqi Liu
- China Research Institute of Daily Chemical Industry, Taiyuan, Shanxi 030001, PR China
| | - Tao Geng
- China Research Institute of Daily Chemical Industry, Taiyuan, Shanxi 030001, PR China
| |
Collapse
|
3
|
Vandermeulen GWM, Boarino A, Klok H. Biodegradation of
water‐soluble
and
water‐dispersible
polymers for agricultural, consumer, and industrial applications—Challenges and opportunities for sustainable materials solutions. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Alice Boarino
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD Lausanne Switzerland
| | - Harm‐Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD Lausanne Switzerland
| |
Collapse
|
4
|
Ludwig M, Geisler R, Prévost S, von Klitzing R. Shape and Structure Formation of Mixed Nonionic-Anionic Surfactant Micelles. Molecules 2021; 26:molecules26144136. [PMID: 34299413 PMCID: PMC8307929 DOI: 10.3390/molecules26144136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 11/16/2022] Open
Abstract
Aqueous solutions of a nonionic surfactant (either Tween20 or BrijL23) and an anionic surfactant (sodium dodecyl sulfate, SDS) are investigated, using small-angle neutron scattering (SANS). SANS spectra are analysed by using a core-shell model to describe the form factor of self-assembled surfactant micelles; the intermicellar interactions are modelled by using a hard-sphere Percus–Yevick (HS-PY) or a rescaled mean spherical approximation (RMSA) structure factor. Choosing these specific nonionic surfactants allows for comparison of the effect of branched (Tween20) and linear (BrijL23) surfactant headgroups, both constituted of poly-ethylene oxide (PEO) groups. The nonionic–anionic surfactant mixtures are studied at various concentrations up to highly concentrated samples (ϕ ≲ 0.45) and various mixing ratios, from pure nonionic to pure anionic surfactant solutions. The scattering data reveal the formation of mixed micelles already at concentrations below the critical micelle concentration of SDS. At higher volume fractions, excluded volume effects dominate the intermicellar structuring, even for charged micelles. In consequence, at high volume fractions, the intermicellar structuring is the same for charged and uncharged micelles. At all mixing ratios, almost spherical mixed micelles form. This offers the opportunity to create a system of colloidal particles with a variable surface charge. This excludes only roughly equimolar mixing ratios (X≈ 0.4–0.6) at which the micelles significantly increase in size and ellipticity due to specific sulfate–EO interactions.
Collapse
Affiliation(s)
- Michael Ludwig
- Soft Matter at Interfaces, Institute for Condensed Matter Physics, Technical University of Darmstadt, D-64289 Darmstadt, Germany; (M.L.); (R.G.)
| | - Ramsia Geisler
- Soft Matter at Interfaces, Institute for Condensed Matter Physics, Technical University of Darmstadt, D-64289 Darmstadt, Germany; (M.L.); (R.G.)
| | - Sylvain Prévost
- Large Scale Structures Group, DS/LSS, Institut Laue-Langevin, CEDEX 9, 38042 Grenoble, France;
| | - Regine von Klitzing
- Soft Matter at Interfaces, Institute for Condensed Matter Physics, Technical University of Darmstadt, D-64289 Darmstadt, Germany; (M.L.); (R.G.)
- Correspondence:
| |
Collapse
|
5
|
He S, Joseph N, Mirzamani M, Pye SJ, Al-anataki AHM, Whitten AE, Chen Y, Kumari H, Raston CL. Vortex fluidic mediated encapsulation of functional fish oil featuring in situ probed small angle neutron scattering. NPJ Sci Food 2020; 4:12. [PMID: 32964127 PMCID: PMC7481235 DOI: 10.1038/s41538-020-00072-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Major challenges for optimizing the benefits of fish oil on human health are improved bioavailability while overcoming the strong odor and avoiding significant oxidation of the omega-3 polyunsaturated fatty acids (PUFAs). The scalable continuous flow thin film vortex fluidic device (VFD) improves the Tween 20 encapsulation of fish oil relative to conventional homogenization processing, with the fish oil particles significantly smaller and the content of the valuable omega-3 fatty acids higher. In addition, after 14 days storage the remaining omega-3 fatty acids content was higher, from ca 31.0% for raw fish oil to ca 62.0% of freeze-dried encapsulated fish oil. The VFD mediated encapsulated fish oil was used to enrich the omega-3 fatty acid content of apple juice, as a model water-based food product, without changing its sensory values. The versatility of the VFD was further demonstrated in forming homogenous suspensions of fish oil containing water-insoluble bioactive molecules, curcumin and quercetin. We have also captured, for the first time, real-time structural changes in nanoencapsulation by installing a VFD with in in situ small angle neutron scattering. Real-time measurements afford valuable insights about self-assembly in solution.
Collapse
|
6
|
McKenzie I, Scheuermann R, Tucker I. Partitioning of 2-phenylethanol and limonene cosurfactants in C 12E 4. Phys Chem Chem Phys 2017; 19:9551-9557. [PMID: 28345720 DOI: 10.1039/c7cp00668c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Avoided level-crossing muon spin resonance (ALC-μSR) has been used to study the dynamics and local environment of spin probes formed by muonium (Mu) addition to 2-phenylethanol (PEA) and limonene (1-methyl-4-(1-methylethenyl)-cyclohexene) in an aqueous dispersion of the nonionic surfactant C12E4 (tetra(ethylene glycol) n-dodecyl ether). The spin probes derived from both cosurfactants reside within the micelles in the L1 phase and the bilayers in the Lα phase rather than in the aqueous region. The local polarity measured by the different isomers of the Mu adducts of PEA suggests there is a water gradient within the micelles and bilayers. Slow rotation of the micelles broadened the Δ1 resonances with increasing temperature in the L1 phase while narrower Δ1 resonances were observed in the Lα phase due to the rapid rotation of the spin probes around a preferred axis, which was wobbling within a cone.
Collapse
Affiliation(s)
- Iain McKenzie
- Centre for Molecular and Materials Science, TRIUMF, Vancouver, BC, Canada. and Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Robert Scheuermann
- Laboratory for Muon Spectroscopy, Paul Scherrer Institute, Villigen AG, Switzerland
| | - Ian Tucker
- Unilever Research and Development, Port Sunlight, Wirral, UK
| |
Collapse
|