1
|
Kolokouris D, Kalenderoglou IE, Duncan AL, Corey RA, Sansom MSP, Kolocouris A. The Role of Cholesterol in M2 Clustering and Viral Budding Explained. J Chem Theory Comput 2024. [PMID: 39494590 DOI: 10.1021/acs.jctc.4c01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The influenza A M2 homotetrameric channel consists of four transmembrane (TM) and four amphipathic helices (AHs). This viral proton channel is suggested to form clusters in the catenoid budding neck areas in raft-like domains of the plasma membrane, resulting in cell membrane scission and viral release. The channel clustering environment is rich in cholesterol. Previous experiments have shown that cholesterol significantly contributes to lipid bilayer undulations in viral buds. However, a clear explanation of membrane curvature from the distribution of cholesterol around the M2TM-AH clusters is lacking. Using coarse-grained molecular dynamics simulations of M2TM-AH in bilayers, we observed that M2 channels form specific, C2-symmetric, clusters with conical shapes driven by the attraction of their AHs. We showed that cholesterol stabilized the formation of M2 channel clusters by filling and bridging the conical gap between M2 channels at specific sites in the N-termini of adjacent channels or via the C-terminal region of TM and AHs, with the latter sites displaying a longer interaction time and higher stability. The potential of mean force calculations showed that when cholesterols occupy the identified interfacial binding sites between two M2 channels, the dimer is stabilized by 11 kJ/mol. This translates to the cholesterol-bound dimer being populated by almost 2 orders of magnitude compared to a dimer lacking cholesterol. We demonstrated that the cholesterol-bridged M2 channels can exert a lateral force on the surrounding membrane to induce the necessary negative Gaussian curvature profile, which permits spontaneous scission of the catenoid membrane neck and leads to viral buds and scission.
Collapse
Affiliation(s)
- Dimitrios Kolokouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Iris E Kalenderoglou
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Robin A Corey
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, U.K
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| |
Collapse
|
2
|
Gamage YI, Wadumesthri Y, Gutiérrez HR, Voronine DV, Pan J. The impact of transmembrane peptides on lipid bilayer structure and mechanics: A study of the transmembrane domain of the influenza A virus M2 protein. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184373. [PMID: 39047857 DOI: 10.1016/j.bbamem.2024.184373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/15/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Transmembrane peptides play important roles in many biological processes by interacting with lipid membranes. This study investigates how the transmembrane domain of the influenza A virus M2 protein, M2TM, affects the structure and mechanics of model lipid bilayers. Atomic force microscopy (AFM) imaging revealed small decreases in bilayer thickness with increasing peptide concentrations. AFM-based force spectroscopy experiments complemented by theoretical model analysis demonstrated significant decreases in bilayer's Young's modulus (E) and lateral area compressibility modulus (KA). This suggests that M2TM disrupts the cohesive interactions between neighboring lipid molecules, leading to a decrease in both the bilayer's resistance to indentation (E) and its ability to resist lateral compression/expansion (KA). The large decreases in bilayer elastic parameters (i.e., E and KA) contrast with small changes in bilayer thickness, implying that bilayer mechanics are not solely dictated by bilayer thickness in the presence of transmembrane peptides. The observed significant reduction in bilayer mechanical properties suggests a softening effect on the bilayer, potentially facilitating membrane curvature generation, a crucial step for M2-mediated viral budding. In parallel, our Raman spectroscopy revealed small but statistically significant changes in hydrocarbon chain vibrational dynamics, indicative of minor disordering in lipid chain conformation. Our findings provide useful insights into the complex interplay between transmembrane peptides and lipid bilayers, highlighting the significance of peptide-lipid interactions in modulating membrane structure, mechanics, and molecular dynamics.
Collapse
Affiliation(s)
| | - Yasinthara Wadumesthri
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America
| | | | - Dmitri V Voronine
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America
| | - Jianjun Pan
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America.
| |
Collapse
|
3
|
Alimohamadi H, Luo EWC, Gupta S, de Anda J, Yang R, Mandal T, Wong GCL. Comparing Multifunctional Viral and Eukaryotic Proteins for Generating Scission Necks in Membranes. ACS NANO 2024; 18:15545-15556. [PMID: 38838261 DOI: 10.1021/acsnano.4c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Deterministic formation of membrane scission necks by protein machinery with multiplexed functions is critical in biology. A microbial example is M2 viroporin, a proton pump from the influenza A virus that is multiplexed with membrane remodeling activity to induce budding and scission in the host membrane during viral maturation. In comparison, the dynamin family constitutes a class of eukaryotic proteins implicated in mitochondrial fission, as well as various budding and endocytosis pathways. In the case of Dnm1, the mitochondrial fission protein in yeast, the membrane remodeling activity is multiplexed with mechanoenzyme activity to create fission necks. It is not clear why these functions are combined in these scission processes, which occur in drastically different compositions and solution conditions. In general, direct experimental access to changing neck sizes induced by individual proteins or peptide fragments is challenging due to the nanoscale dimensions and influence of thermal fluctuations. Here, we use a mechanical model to estimate the size of scission necks by leveraging small-angle X-ray scattering structural data of protein-lipid systems under different conditions. The influence of interfacial tension, lipid composition, and membrane budding morphology on the size of the induced scission necks is systematically investigated using our data and molecular dynamic simulations. We find that the M2 budding protein from the influenza A virus has robust pH-dependent membrane activity that induces nanoscopic necks within the range of spontaneous hemifission for a broad range of lipid compositions. In contrast, the sizes of scission necks generated by mitochondrial fission proteins strongly depend on lipid composition, which suggests a role for mechanical constriction.
Collapse
Affiliation(s)
- Haleh Alimohamadi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Elizabeth Wei-Chia Luo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Shivam Gupta
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Jaime de Anda
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Rena Yang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Taraknath Mandal
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Pokorny L, Burden JJ, Albrecht D, Bamford R, Leigh KE, Sridhar P, Knowles TJ, Modis Y, Mercer J. The vaccinia chondroitin sulfate binding protein drives host membrane curvature to facilitate fusion. EMBO Rep 2024; 25:1310-1325. [PMID: 38321165 PMCID: PMC10933376 DOI: 10.1038/s44319-023-00040-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 02/08/2024] Open
Abstract
Cellular attachment of viruses determines their cell tropism and species specificity. For entry, vaccinia, the prototypic poxvirus, relies on four binding proteins and an eleven-protein entry fusion complex. The contribution of the individual virus binding proteins to virion binding orientation and membrane fusion is unclear. Here, we show that virus binding proteins guide side-on virion binding and promote curvature of the host membrane towards the virus fusion machinery to facilitate fusion. Using a membrane-bleb model system together with super-resolution and electron microscopy we find that side-bound vaccinia virions induce membrane invagination in the presence of low pH. Repression or deletion of individual binding proteins reveals that three of four contribute to binding orientation, amongst which the chondroitin sulfate binding protein, D8, is required for host membrane bending. Consistent with low-pH dependent macropinocytic entry of vaccinia, loss of D8 prevents virion-associated macropinosome membrane bending, disrupts fusion pore formation and infection. Our results show that viral binding proteins are active participants in successful virus membrane fusion and illustrate the importance of virus protein architecture for successful infection.
Collapse
Affiliation(s)
- Laura Pokorny
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- MRC-LMCB, University College London, London, WC1E 6BT, UK
| | - Jemima J Burden
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - David Albrecht
- MRC-LMCB, University College London, London, WC1E 6BT, UK
| | - Rebecca Bamford
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- MRC-LMCB, University College London, London, WC1E 6BT, UK
| | - Kendra E Leigh
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
| | - Pooja Sridhar
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Timothy J Knowles
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Yorgo Modis
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
| | - Jason Mercer
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
- MRC-LMCB, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
5
|
Aryal CM, Pan J. Probing the interactions of the HIV-1 matrix protein-derived polybasic region with lipid bilayers: insights from AFM imaging and force spectroscopy. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:57-67. [PMID: 38172352 DOI: 10.1007/s00249-023-01697-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/18/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
The human immunodeficiency virus type 1 (HIV-1) matrix protein contains a highly basic region, MA-HBR, crucial for various stages of viral replication. To elucidate the interactions between the polybasic peptide MA-HBR and lipid bilayers, we employed liquid-based atomic force microscopy (AFM) imaging and force spectroscopy on lipid bilayers of differing compositions. In 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers, AFM imaging revealed the formation of annulus-shaped protrusions upon exposure to the polybasic peptide, accompanied by distinctive mechanical responses characterized by enhanced bilayer puncture forces. Importantly, our AFM-based force spectroscopy measurements unveiled that MA-HBR induces interleaflet decoupling within the cohesive bilayer organization. This is evidenced by a force discontinuity observed within the bilayer's elastic deformation regime. In POPC/cholesterol bilayers, MA-HBR caused similar yet smaller annular protrusions, demonstrating an intriguing interplay with cholesterol-rich membranes. In contrast, in bilayers containing anionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) lipids, MA-HBR induced unique annular protrusions, granular nanoparticles, and nanotubules, showcasing its distinctive effects in anionic lipid-enriched environments. Notably, our force spectroscopy data revealed that anionic POPS lipids weakened interleaflet adhesion within the bilayer, resulting in interleaflet decoupling, which potentially contributes to the specific bilayer perturbations induced by MA-HBR. Collectively, our findings highlight the remarkable variations in how the polybasic peptide, MA-HBR, interacts with lipid bilayers of differing compositions, shedding light on its role in host membrane restructuring during HIV-1 infection.
Collapse
Affiliation(s)
- Chinta M Aryal
- Department of Physics, University of South Florida, Tampa, FL, 33620, USA
- , 2920 Burnet Ave Apt 3, Cincinnati, OH, 45219, USA
| | - Jianjun Pan
- Department of Physics, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
6
|
Alimohamadi H, Luo EWC, Gupta S, de Anda J, Yang R, Mandal T, Wong GCL. Comparing multifunctional viral and eukaryotic proteins for generating scission necks in membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574447. [PMID: 38260291 PMCID: PMC10802413 DOI: 10.1101/2024.01.05.574447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Deterministic formation of membrane scission necks by protein machinery with multiplexed functions is critical in biology. A microbial example is the M2 viroporin, a proton pump from the influenza A virus which is multiplexed with membrane remodeling activity to induce budding and scission in the host membrane during viral maturation. In comparison, the dynamin family constitutes a class of eukaryotic proteins implicated in mitochondrial fission, as well as various budding and endocytosis pathways. In the case of Dnm1, the mitochondrial fission protein in yeast, the membrane remodeling activity is multiplexed with mechanoenzyme activity to create fission necks. It is not clear why these functions are combined in these scission processes, which occur in drastically different compositions and solution conditions. In general, direct experimental access to changing neck sizes induced by individual proteins or peptide fragments is challenging due to the nanoscale dimensions and influence of thermal fluctuations. Here, we use a mechanical model to estimate the size of scission necks by leveraging Small-Angle X-ray Scattering (SAXS) structural data of protein-lipid systems under different conditions. The influence of interfacial tension, lipid composition, and membrane budding morphology on the size of the induced scission necks is systematically investigated using our data and molecular dynamic simulations. We find that the M2 budding protein from the influenza A virus has robust pH-dependent membrane activity that induces nanoscopic necks within the range of spontaneous hemi-fission for a broad range of lipid compositions. In contrast, the sizes of scission necks generated by mitochondrial fission proteins strongly depend on lipid composition, which suggests a role for mechanical constriction.
Collapse
|
7
|
Madsen JJ, Rossman JS. Cholesterol and M2 Rendezvous in Budding and Scission of Influenza A Virus. Subcell Biochem 2023; 106:441-459. [PMID: 38159237 DOI: 10.1007/978-3-031-40086-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The cholesterol of the host cell plasma membrane and viral M2 protein plays a crucial role in multiple stages of infection and replication of the influenza A virus. Cholesterol is required for the formation of heterogeneous membrane microdomains (or rafts) in the budozone of the host cell that serves as assembly sites for the viral components. The raft microstructures act as scaffolds for several proteins. Cholesterol may further contribute to the mechanical forces necessary for membrane scission in the last stage of budding and help to maintain the stability of the virus envelope. The M2 protein has been shown to cause membrane scission in model systems by promoting the formation of curved lipid bilayer structures that, in turn, can lead to membrane vesicles budding off or scission intermediates. Membrane remodeling by M2 is intimately linked with cholesterol as it affects local lipid composition, fluidity, and stability of the membrane. Thus, both cholesterol and M2 protein contribute to the efficient and proper release of newly formed influenza viruses from the virus-infected cells.
Collapse
Affiliation(s)
- Jesper J Madsen
- Global and Planetary Health, Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, USA.
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Jeremy S Rossman
- School of Biosciences, University of Kent, Canterbury, Kent, UK
- Research-Aid Networks, Chicago, IL, USA
| |
Collapse
|
8
|
Aryal CM, Bui NN, Song L, Pan J. The N-terminal helices of amphiphysin and endophilin have different capabilities of membrane remodeling. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183907. [PMID: 35247332 DOI: 10.1016/j.bbamem.2022.183907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Amphiphysin and endophilin are two members of the N-BAR protein family. We have reported membrane interactions of the helix 0 of endophilin (H0-Endo). Here we investigate membrane modulations caused by the helix 0 of amphiphysin (H0-Amph). Electron paramagnetic resonance (EPR) spectroscopy was used to explore membrane properties. H0-Amph was found to reduce lipid mobility, make the membrane interior more polar, and decrease lipid chain orientational order. The EPR data also showed that for anionic membranes, H0-Endo acted as a more potent modulator. For instance, at peptide-to-lipid (P/L) ratio of 1/20, the peak-to-peak splitting was increased by 0.27 G and 1.89 G by H0-Amph and H0-Endo, respectively. Similarly, H0-Endo caused a larger change in the bilayer polarity than H0-Amph (30% versus 12% at P/L = 1/20). At P/L = 1/50, the chain orientational order was decreased by 26% and 66% by H0-Amph and H0-Endo, respectively. The different capabilities were explained by considering hydrophobicity score distributions. We employed atomic force microscopy to investigate membrane structural changes. Both peptides caused the formation of micron-sized holes. Interestingly, only H0-Amph induced membrane fusion as evidenced by the formation of high-rise regions. Lastly, experiments of giant unilamellar vesicles showed that H0-Amph and H0-Endo generated thin tubules and miniscule vesicles, respectively. Together, our studies showed that both helices are effective in altering membrane properties; the observed changes might be important for membrane curvature induction. Importantly, comparisons between the two peptides revealed that the degree of membrane remodeling is dependent on the sequence of the N-terminal helix of the N-BAR protein family.
Collapse
Affiliation(s)
- Chinta M Aryal
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America; MED-Cancer & Cell Biology, University of Cincinnati, Cincinnati, OH 45267
| | - Nhat Nguyen Bui
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, United States of America
| | - Likai Song
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, United States of America.
| | - Jianjun Pan
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America.
| |
Collapse
|
9
|
Canepa E, Salassi S, de Marco AL, Lambruschini C, Odino D, Bochicchio D, Canepa F, Canale C, Dante S, Brescia R, Stellacci F, Rossi G, Relini A. Amphiphilic gold nanoparticles perturb phase separation in multidomain lipid membranes. NANOSCALE 2020; 12:19746-19759. [PMID: 32966489 DOI: 10.1039/d0nr05366j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Amphiphilic gold nanoparticles with diameters in the 2-4 nm range are promising as theranostic agents thanks to their spontaneous translocation through cell membranes. This study addresses the effects that these nanoparticles may have on a distinct feature of plasma membranes: lipid lateral phase separation. Atomic force microscopy, quartz crystal microbalance, and molecular dynamics are combined to study the interaction between model neuronal membranes, which spontaneously form ordered and disordered lipid domains, and amphiphilic gold nanoparticles having negatively charged surface functionalization. Nanoparticles are found to interact with the bilayer and form bilayer-embedded ordered aggregates. Nanoparticles also suppress lipid phase separation, in a concentration-dependent fashion. A general, yet simple thermodynamic model is developed to show that the change of lipid-lipid enthalpy is the dominant driving force towards the nanoparticle-induced destabilization of phase separation.
Collapse
Affiliation(s)
- Ester Canepa
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Aryal CM, Bui NN, Khadka NK, Song L, Pan J. The helix 0 of endophilin modifies membrane material properties and induces local curvature. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183397. [PMID: 32533976 DOI: 10.1016/j.bbamem.2020.183397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 11/26/2022]
Abstract
The amphipathic helix 0 of endophilin (i.e., H0-Endo) is important to membrane binding, but its function of curvature generation remains controversial. We used electron paramagnetic resonance (EPR) spectroscopy to study effects of H0-Endo on membrane material properties. We found that H0-Endo reduced lipid chain mobility and increased bilayer polarity, i.e., making the bilayer interior more polar. Lipid-dependent examination revealed that anionic lipids augmented the effect of H0-Endo, while cholesterol had a minimal impact. Our EPR spectroscopy of magnetically aligned bicelles showed that as the peptide-to-lipid ratio increased, the lipid chain orientational order decreased gradually, followed by a sudden loss. We discuss an interfacial-bound model of the amphipathic H0-Endo to account for all EPR data. We used atomic force microscopy and fluorescence microscopy to explore membrane morphological changes. We found that H0-Endo caused the formation of micron-sized holes in mica-supported planar bilayers. Hole formation is likely caused by two competing forces - the adhesion force exerted by the substrate represses bilayer budging, whereas the line tension originating from peptide clustering has a tendency of destabilizing bilayer organization. In the absence of substrate influences, membrane curvature induction was manifested by generating small vesicles surrounding giant unilamellar vesicles. Our results of membrane perforation and vesiculation suggest that the functionality of H0-Endo is more than just coordinating membrane binding of endophilin.
Collapse
Affiliation(s)
- Chinta M Aryal
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America
| | - Nhat Nguyen Bui
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, United States of America
| | - Nawal K Khadka
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America
| | - Likai Song
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, United States of America.
| | - Jianjun Pan
- Department of Physics, University of South Florida, Tampa, FL 33620, United States of America.
| |
Collapse
|
11
|
Elkins MR, Sergeyev IV, Hong M. Determining Cholesterol Binding to Membrane Proteins by Cholesterol 13C Labeling in Yeast and Dynamic Nuclear Polarization NMR. J Am Chem Soc 2018; 140:15437-15449. [PMID: 30338997 PMCID: PMC6361393 DOI: 10.1021/jacs.8b09658] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a general strategy for determining the cholesterol-binding site of eukaryotic membrane proteins in native-like lipid membranes by NMR spectroscopy. The strategy combines yeast biosynthetic 13C enrichment of cholesterol with detection of protein-cholesterol 13C-13C cross peaks in 2D correlation NMR spectra under the dynamic nuclear polarization (DNP) condition. Low-temperature DNP not only allows high-sensitivity detection of weak protein-cholesterol cross peaks in 2D spectra but also immobilizes cholesterol and protein to enable intermolecular distance measurements. We demonstrate this approach on the influenza M2 protein, which utilizes cholesterol to conduct membrane scission in the last step of virus budding and release from the host cell plasma membrane. A 13C-13C double-quantum filter was employed to significantly simplify the 2D 13C-13C correlation spectra and facilitate the identification of protein-cholesterol cross peaks. A number of cross peaks between the M2 transmembrane residues' side chains and the cholesterol sterol group were detected, which complement recently measured protein contacts to the isooctyl tail of cholesterol to define an extended binding interface. These results provide atomic-level evidence of M2-cholesterol interaction to cause membrane curvature and scission, and the approach is generally applicable to other eukaryotic membrane proteins for understanding the influence of cholesterol on membrane protein function.
Collapse
Affiliation(s)
- Matthew R. Elkins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
12
|
Entropic forces drive clustering and spatial localization of influenza A M2 during viral budding. Proc Natl Acad Sci U S A 2018; 115:E8595-E8603. [PMID: 30150411 DOI: 10.1073/pnas.1805443115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The influenza A matrix 2 (M2) transmembrane protein facilitates virion release from the infected host cell. In particular, M2 plays a role in the induction of membrane curvature and/or in the scission process whereby the envelope is cut upon virion release. Here we show using coarse-grained computer simulations that various M2 assembly geometries emerge due to an entropic driving force, resulting in compact clusters or linearly extended aggregates as a direct consequence of the lateral membrane stresses. Conditions under which these protein assemblies will cause the lipid membrane to curve are explored, and we predict that a critical cluster size is required for this to happen. We go on to demonstrate that under the stress conditions taking place in the cellular membrane as it undergoes large-scale membrane remodeling, the M2 protein will, in principle, be able to both contribute to curvature induction and sense curvature to line up in manifolds where local membrane line tension is high. M2 is found to exhibit linactant behavior in liquid-disordered-liquid-ordered phase-separated lipid mixtures and to be excluded from the liquid-ordered phase, in near-quantitative agreement with experimental observations. Our findings support a role for M2 in membrane remodeling during influenza viral budding both as an inducer and a sensor of membrane curvature, and they suggest a mechanism by which localization of M2 can occur as the virion assembles and releases from the host cell, independent of how the membrane curvature is produced.
Collapse
|
13
|
Li R, Muraoka T, Kinbara K. Thermally-induced lateral assembly of a PEG-containing amphiphile triggering vesicle budding. Chem Commun (Camb) 2017; 53:11662-11665. [PMID: 29018844 DOI: 10.1039/c7cc06489f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A macrocyclic amphiphile consisting of a thermo-responsive octaethylene glycol chain with hydrophobic aromatic and aliphatic units undergoes lateral self-assembly in a liquid-disordered-state phospholipid bilayer membrane upon heating, which further leads to vesicle budding.
Collapse
Affiliation(s)
- Rui Li
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | | | | |
Collapse
|
14
|
Pan J, Sahoo PK, Dalzini A, Hayati Z, Aryal CM, Teng P, Cai J, Gutierrez HR, Song L. Membrane Disruption Mechanism of a Prion Peptide (106-126) Investigated by Atomic Force Microscopy, Raman and Electron Paramagnetic Resonance Spectroscopy. J Phys Chem B 2017; 121:5058-5071. [PMID: 28459565 PMCID: PMC5770145 DOI: 10.1021/acs.jpcb.7b02772] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A fragment of the human prion protein spanning residues 106-126 (PrP106-126) recapitulates many essential properties of the disease-causing protein such as amyloidogenicity and cytotoxicity. PrP106-126 has an amphipathic characteristic that resembles many antimicrobial peptides (AMPs). Therefore, the toxic effect of PrP106-126 could arise from a direct association of monomeric peptides with the membrane matrix. Several experimental approaches are employed to scrutinize the impacts of monomeric PrP106-126 on model lipid membranes. Porous defects in planar bilayers are observed by using solution atomic force microscopy. Adding cholesterol does not impede defect formation. A force spectroscopy experiment shows that PrP106-126 reduces Young's modulus of planar lipid bilayers. We use Raman microspectroscopy to study the effect of PrP106-126 on lipid atomic vibrational dynamics. For phosphatidylcholine lipids, PrP106-126 disorders the intrachain conformation, while the interchain interaction is not altered; for phosphatidylethanolamine lipids, PrP106-126 increases the interchain interaction, while the intrachain conformational order remains similar. We explain the observed differences by considering different modes of peptide insertion. Finally, electron paramagnetic resonance spectroscopy shows that PrP106-126 progressively decreases the orientational order of lipid acyl chains in magnetically aligned bicelles. Together, our experimental data support the proposition that monomeric PrP106-126 can disrupt lipid membranes by using similar mechanisms found in AMPs.
Collapse
Affiliation(s)
- Jianjun Pan
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Prasana K. Sahoo
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Annalisa Dalzini
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Zahra Hayati
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Chinta M. Aryal
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Peng Teng
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | | | - Likai Song
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| |
Collapse
|
15
|
Lateral Organization of Influenza Virus Proteins in the Budozone Region of the Plasma Membrane. J Virol 2017; 91:JVI.02104-16. [PMID: 28202765 DOI: 10.1128/jvi.02104-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/12/2017] [Indexed: 12/24/2022] Open
Abstract
Influenza virus assembles and buds at the plasma membrane of virus-infected cells. The viral proteins assemble at the same site on the plasma membrane for budding to occur. This involves a complex web of interactions among viral proteins. Some proteins, like hemagglutinin (HA), NA, and M2, are integral membrane proteins. M1 is peripherally membrane associated, whereas NP associates with viral RNA to form an RNP complex that associates with the cytoplasmic face of the plasma membrane. Furthermore, HA and NP have been shown to be concentrated in cholesterol-rich membrane raft domains, whereas M2, although containing a cholesterol binding motif, is not raft associated. Here we identify viral proteins in planar sheets of plasma membrane using immunogold staining. The distribution of these proteins was examined individually and pairwise by using the Ripley K function, a type of nearest-neighbor analysis. Individually, HA, NA, M1, M2, and NP were shown to self-associate in or on the plasma membrane. HA and M2 are strongly coclustered in the plasma membrane; however, in the case of NA and M2, clustering depends upon the expression system used. Despite both proteins being raft resident, HA and NA occupy distinct but adjacent membrane domains. M2 and M1 strongly cocluster, but the association of M1 with HA or NA is dependent upon the means of expression. The presence of HA and NP at the site of budding depends upon the coexpression of other viral proteins. Similarly, M2 and NP occupy separate compartments, but an association can be bridged by the coexpression of M1.IMPORTANCE The complement of influenza virus proteins necessary for the budding of progeny virions needs to accumulate at budozones. This is complicated by HA and NA residing in lipid raft-like domains, whereas M2, although an integral membrane protein, is not raft associated. Other necessary protein components such as M1 and NP are peripherally associated with the membrane. Our data define spatial relationships between viral proteins in the plasma membrane. Some proteins, such as HA and M2, inherently cocluster within the membrane, although M2 is found mostly at the periphery of regions of HA, consistent with the proposed role of M2 in scission at the end of budding. The association between some pairs of influenza virus proteins, such as M2 and NP, appears to be brokered by additional influenza virus proteins, in this case M1. HA and NA, while raft associated, reside in distinct domains, reflecting their distributions in the viral membrane.
Collapse
|
16
|
Khadka NK, Teng P, Cai J, Pan J. Modulation of lipid membrane structural and mechanical properties by a peptidomimetic derived from reduced amide scaffold. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:734-744. [PMID: 28132901 DOI: 10.1016/j.bbamem.2017.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/22/2017] [Accepted: 01/25/2017] [Indexed: 10/20/2022]
Abstract
Understanding how antimicrobial peptidomimetics interact with lipid membranes is important in battling multidrug resistant bacterial pathogens. We study the effects of a recently reported peptidomimetic on lipid bilayer structural and mechanical properties. The compound referred to as E107-3 is synthesized based on the acylated reduced amide scaffold and has been shown to exhibit good antimicrobial potency. Our vesicle leakage assay indicates that the compound increases lipid bilayer permeability. We use micropipette aspiration to explore the kinetic response of giant unilamellar vesicles (GUVs). Exposure to the compound causes the GUV protrusion length LP to spontaneously increase and then decrease, followed by GUV rupture. Solution atomic force microscopy (AFM) is used to visualize lipid bilayer structural modulation within a nanoscopic regime. Unlike melittin, which produces pore-like structures, the peptidomimetic compound is found to induce nanoscopic heterogeneous structures. Finally, we use AFM-based force spectroscopy to study the impact of the compound on lipid bilayer mechanical properties. We find that incremental addition of the compound to planar lipid bilayers results in a moderate decrease of the bilayer puncture force FP and a 39% decrease of the bilayer area compressibility modulus KA. To explain our experimental data, we propose a membrane interaction model encompassing disruption of lipid chain packing and extraction of lipid molecules. The later action mode is supported by our observation of a double-bilayer structure in the presence of fusogenic calcium ions.
Collapse
Affiliation(s)
- Nawal K Khadka
- Department of Physics, University of South Florida, Tampa, FL 33620, United States
| | - Peng Teng
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Jianjun Pan
- Department of Physics, University of South Florida, Tampa, FL 33620, United States.
| |
Collapse
|