1
|
Feeney MJ, Thomas SW. Combining Top-Down and Bottom-Up with Photodegradable Layer-by-Layer Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13791-13804. [PMID: 31487186 DOI: 10.1021/acs.langmuir.9b02005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Layer-by-layer (LbL) self-assembly of polymer coatings is a bottom-up fabrication technique with broad applicability across a wide range of materials and applications that require control over interfacial properties. While most LbL coatings are chemically uniform in directions both tangent and perpendicular to their substrate, control over the properties of surface coatings as a function of space can enhance their function. To contribute to this rapidly advancing field, our group has focused on the top-down spatiotemporal control possible with photochemically reactive LbL coatings, harnessed through charge-shifting polyelectrolytes enabled by photocleavable ester pendants. The photolysis of the photocleavable esters degrades LbL films containing these polyelectrolytes. The chemical structures of the photocleavable groups dictate the wavelengths responsible for disrupting these coatings, ranging from ultraviolet to near-infrared in our work. In addition, spatially segregating reactive groups into "compartments" within LbL films has enabled us to fabricate reactive free-standing polymer films and multiheight photopatterned coatings. Overall, by combining bottom-up and top-down approaches, photoreactive LbL films enable precise control over the interfacial properties of polymer and composite coatings.
Collapse
Affiliation(s)
- Matthew J Feeney
- Department of Chemistry , Tufts University , 62 Talbot Avenue , Medford , Massachusetts 02155 , United States
| | - Samuel W Thomas
- Department of Chemistry , Tufts University , 62 Talbot Avenue , Medford , Massachusetts 02155 , United States
| |
Collapse
|
2
|
Zhang H, Zhou T, Shen J, Zhang P, Chen X, Chen Y, Yu Y. A Biocompatible Multilayer Film from an Asymmetric Picolinium-Containing Polycation with Fast Visible-Light/NIR-Degradability. Macromol Rapid Commun 2019; 40:e1900441. [PMID: 31553508 DOI: 10.1002/marc.201900441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/12/2019] [Indexed: 11/10/2022]
Abstract
Finely tuning the photodegradation behavior of the layer-by-layer (LbL) film from the view of controlling the chemical structure of the film-building polymer is still a challenge in related fields. To meet this requirement, a photodegradable polymer (P1) is rationally designed for assembling a visible-light-degradable multilayer film with polystyrene sulfonate (PSS). Compared with similar photopolymers (P2 and P3), this asymmetric picolinium-containing polymer can significantly enhance the degradation rate of as-prepared LbL films; under the same degradation condition, the degradation rate of (P1/PSS)10 is 3 and 6.6 times that of (P2/PSS)10 and (P3/PSS)10, respectively. Moreover, near-infrared light (NIR) is available for triggering the degradation of this film with the assistance of upconversion nanoparticles of YbTm@Lu. The cell cytotoxicity and cell proliferation experiments reveal that P1 is nontoxic and favorable for cell proliferation at concentrations of up to 500 μg mL-1 . As for (PSS/P1)10 films, the ratio of cell number of these two samples ((PSS/P1)10 modified: photodegraded) increases dramatically and reaches about 1.67:1 after 72 h incubation. On the basis of these results, it is anticipated that P1 and this LbL film is an exceptional candidate for visible-light/NIR degradable materials in materials and biological science, medicine, and optics.
Collapse
Affiliation(s)
- Hanzhi Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Tongtong Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Jiwei Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Ping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Xin Chen
- School of Chemical Engineering and Technology, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an, 710049, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, China
| | - You Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| |
Collapse
|
3
|
Marets N, Kanno S, Ogata S, Ishii A, Kawaguchi S, Hasegawa M. Lanthanide-Oligomeric Brush Films: From Luminescence Properties to Structure Resolution. ACS OMEGA 2019; 4:15512-15520. [PMID: 31572852 PMCID: PMC6761684 DOI: 10.1021/acsomega.9b01775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/22/2019] [Indexed: 05/17/2023]
Abstract
Lanthanide (Ln) based luminescent materials are experiencing an increasing interest in their applications in several fields. In this study, we report a series of new lanthanide-oligomeric brush films, supported on quartz substrates and prepared using a layer-by-layer method (LbL). Oligomeric brush films are composed of small oligomers from our previously reported coordination polymers [x-EuL] and [x-TbL] (with x = 1, 3, and 5 generations of Ln complexes), which are grown perpendicularly from a carboxylate self-assembled monolayer. Oligomers composed of our previously described helical lanthanide complex LnL (Ln: Eu and Tb) as a luminescent moiety and benzene-1,4-dicarboxylate acid (bdc) used as a linker. Mixed films having the fifth-generation Ln complexes composed of equimolar mixture of Eu and Tb ions were prepared. Oligomeric brush films are highly transparent and exhibited a colored emission under UV irradiation. Pure Ln (Eu or Tb) films showed a strong luminescence from the Ln ions. Their luminescent properties depended on the number of lanthanide layers in the films composed of the first to third generations of lanthanide complexes. Then, the increase of the complex layers induced no difference in the luminescent properties. An energy transfer from Tb to Eu ions in the mixed films indicated a short distance between lanthanide ions of a fifth layer. The structural analysis together with the observed luminescent properties and some previous studies allowed to clarify the disposition of the oligomers in the films.
Collapse
Affiliation(s)
- Nicolas Marets
- Department
of Chemistry and Biological Science and Mirai Molecular Materials Design
Institute, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan
| | - Shuhei Kanno
- Department
of Chemistry and Biological Science and Mirai Molecular Materials Design
Institute, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan
| | - Shuhei Ogata
- Department
of Chemistry and Biological Science and Mirai Molecular Materials Design
Institute, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan
| | - Ayumi Ishii
- Department
of Chemistry and Biological Science and Mirai Molecular Materials Design
Institute, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan
- JST,
PRESTO, Kawaguchi, Saitama 332-0012, Japan
- Toin University of Yokohama, Aoba-ku, Yokohama, Kanagawa 225-8508, Japan
| | - Shogo Kawaguchi
- Research
& Utilization Division, Japan Synchrotron
Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Miki Hasegawa
- Department
of Chemistry and Biological Science and Mirai Molecular Materials Design
Institute, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan
| |
Collapse
|
4
|
Bian Q, Xue Z, Sun P, Shen K, Wang S, Jia J. Visible-light-triggered supramolecular valves based on β-cyclodextrin-modified mesoporous silica nanoparticles for controlled drug release. RSC Adv 2019; 9:17179-17182. [PMID: 35519886 PMCID: PMC9064457 DOI: 10.1039/c9ra02612f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/23/2019] [Indexed: 11/21/2022] Open
Abstract
Visible-light triggered drug delivery system based on tetra-ortho-methoxy-substituted azobenzene (mAzo) and β-cyclodextrin (β-CD) modified mesoporous silica nanoparticles (MSNs-CD).
Collapse
Affiliation(s)
- Qing Bian
- Analysis and Testing Central Facility of Anhui University of Technology
- Maanshan 243032
- China
| | - Zhaolu Xue
- Research Center of Modern Surface
- Interface Engineering of Anhui University of Technology
- Maanshan 243032
- China
| | - Po Sun
- Analysis and Testing Central Facility of Anhui University of Technology
- Maanshan 243032
- China
| | - Kejing Shen
- Analysis and Testing Central Facility of Anhui University of Technology
- Maanshan 243032
- China
| | - Shangbing Wang
- Analysis and Testing Central Facility of Anhui University of Technology
- Maanshan 243032
- China
| | - Juanying Jia
- Analysis and Testing Central Facility of Anhui University of Technology
- Maanshan 243032
- China
| |
Collapse
|
5
|
pH-Responsive zeolitic imidazole framework nanoparticles with high active inhibitor content for self-healing anticorrosion coatings. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.06.035] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Agrawal G, Agrawal R. Functional Microgels: Recent Advances in Their Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801724. [PMID: 30035853 DOI: 10.1002/smll.201801724] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Here, a spotlight is shown on aqueous microgel particles which exhibit a great potential for various biomedical applications such as drug delivery, cell imaging, and tissue engineering. Herein, different synthetic methods to develop microgels with desirable functionality and properties along with degradable strategies to ensure their renal clearance are briefly presented. A special focus is given on the ability of microgels to respond to various stimuli such as temperature, pH, redox potential, magnetic field, light, etc., which helps not only to adjust their physical and chemical properties, and degradability on demand, but also the release of encapsulated bioactive molecules and thus making them suitable for drug delivery. Furthermore, recent developments in using the functional microgels for cell imaging and tissue regeneration are reviewed. The results reviewed here encourage the development of a new class of microgels which are able to intelligently perform in a complex biological environment. Finally, various challenges and possibilities are discussed in order to achieve their successful clinical use in future.
Collapse
Affiliation(s)
- Garima Agrawal
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Paper Mill Road, Saharanpur, 247001, Uttar Pradesh, India
| | - Rahul Agrawal
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-1500, USA
| |
Collapse
|
7
|
Host-guest self-assembly toward reversible visible-light-responsive switching for bacterial adhesion. Acta Biomater 2018; 76:39-45. [PMID: 30078424 DOI: 10.1016/j.actbio.2018.06.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/11/2018] [Accepted: 06/30/2018] [Indexed: 12/22/2022]
Abstract
Here we report a facile method to construct reversible visible-light-responsive switching from antibacterial to bioadhesion by host-guest self-assembly of β-cyclodextrin (β-CD) and azobenzene functionalized polycation/polyanion. The visible-light-responsible azobenzene functionalized polycation, poly{6-[(2,6-dimethoxyphenyl)azo-4-(2',6'-dimethoxy)phenoxy]propyl dimethylaminoethyl methacrylate-random-poly(2-(N,N-dimethylaminoethyl) methacrylate) (Azo-PDMAEMA), was synthesized via quaternization reaction between 2,6,2',6'-tetramethoxy-4-(3-bromopropoxy)azobenzene (AzoOMeBr) and poly(2-(N,N-dimethylaminoethyl) methacrylate) (PDMAEMA), and the polyanion, poly{6-[(2,6-dimethoxyphenyl)azo-4-(2',6'-dimethoxy) phenoxy]hexyl acrylate-random-acrylic acid} (Azo-PAA), was synthesized via esterification reaction between 2,6,2',6'-tetramethoxy-4-(6-hydroxyhexyloxy) azobenzene (AzoOMeOH) and poly(acryloyl chloride) (PAC) and subsequent hydrolysis reactions. The switch surface could be achieved via the alternate host-guest assembly of Azo-PDMAEMA and Azo-PAA onto a β-CD-terminated substratum (Sub-CD) through visible light irradiation. The positively charged Azo-PDMAEMA with quaternary ammonium groups exhibited antimicrobial properties and few bacteria were adhered on the surface, while the negatively charged Azo-PAA with carboxyl acid groups exhibited excellent bioadhesive properties and a large number of bacteria were adhered. Interestingly, the switch between antibacterial and bioadhesive could be realized upon visible light irradiation via alternate assembly of Azo-PDMAEMA and Azo-PAA. The proposed approach to manufacturing visible-light-responsive surface with reversible and alterable biofunctionality switching between antibacterial and bioadhesive is simple and efficient, which is promising for preparation of multifunctional polymeric surfaces to encounter multifarious demands for the biomedical and biotechnological applications. STATEMENT OF SIGNIFICANCE Light has attracted great attention in building biointerfaces for its precise spatiotemporal control and convenient operation. However, UV light may damage to biological samples and living tissues, which will limit its applications. This study demonstrates a novel visible-light-responsive surface fabricated through reversible assembly of azobenzene functionalized polycations/polyanions on cyclodextrin (CD)-terminated substrate by host-guest interactions between the visible-light-responsive azobenzene mAzo and CD, which has not been examined previously. It is noted that the azobenzene functionalized polycations show strong antibacterial activities, while the polyanions show excellent bioadhesive properties, as can be switched through the alternate assembly upon visible-light irradiation. This facile and versatile approach to visible-light-responsive surfaces holds great potential for switching of bioadhesion.
Collapse
|
8
|
Zeng X, Zhou X, Wu S. Red and Near-Infrared Light-Cleavable Polymers. Macromol Rapid Commun 2018; 39:e1800034. [PMID: 29682838 DOI: 10.1002/marc.201800034] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/12/2018] [Indexed: 12/20/2022]
Abstract
Photocleavable polymers have attracted much attention in drug delivery, photopatterning, and controlling cell behavior. Photolysis is usually induced by UV light. However, UV light cannot penetrate deeply into biological tissue and may damage biological components. Therefore, conventional UV-light-cleavable polymers are problematic for deep-tissue biomedical applications. In this feature article, red and near-infrared light-cleavable polymers are reviewed, and their potential applications are highlighted. The remaining challenges in the field of photocleavable polymers are discussed.
Collapse
Affiliation(s)
- Xiaolong Zeng
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Si Wu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,CAS Key Laboratory of Soft Matter Chemistry, Key Laboratory of Optoelectronic Science and Technology, Innovation Centre of Chemistry for Energy Materials, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
9
|
Perni S, Martini-Gilching K, Prokopovich P. Controlling release kinetics of gentamicin from silica nano-carriers. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.04.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Wang D, Zhang J, Zhong Y, Chu M, Chang W, Yao Z. Mussel-inspired bio-compatible free-standing adhesive films assembled layer-by-layer with water-resistance. RSC Adv 2018; 8:18904-18912. [PMID: 35539663 PMCID: PMC9080690 DOI: 10.1039/c8ra03214a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/13/2018] [Indexed: 12/16/2022] Open
Abstract
The development of mussel-inspired materials with enhanced mechanical and physiological characteristics is fascinating due to the resulting structural properties. In this work, based on a chemical reaction, 3-(3,4-dihydroxyphenyl)propionic acid and dopamine hydrochloride (DA), with a catechol group, were covalently grafted onto a bio-compatible polymer backbone of chitosan hydrochloride (CHI) and hyaluronic acid sodium (HA). A mussel-inspired water-resistant adhesive film that could adhere in water was then fabricated by an environmentally friendly layer-by-layer (LbL) process. The water-resistant adhesive film demonstrated a strong underwater mechanical connection (0.82 ± 0.19 MPa) and a high transmittance (more than 83%) in the visible region; these characteristics are beneficial for clinical observation. A free-standing water-resistant adhesive film with a high transmittance of over 83% was also demonstrated and obtained from a facial and effective mechanical exfoliation method. The free-standing film exhibited favorable adhesion capacity with porcine skin, making it attractive for applications in the biomedical field. Mussel-inspired, water-resistant, free-standing adhesive films with high transmittance were fabricated with an environmentally friendly layer-by-layer process.![]()
Collapse
Affiliation(s)
- Dan Wang
- School of Chemistry and Environmental Engineering
- Changchun University of Science and Technology
- Changchun
- P. R. China
- State Key Laboratory of Polymer Physics and Chemistry
| | - Jianfu Zhang
- School of Chemistry and Environmental Engineering
- Changchun University of Science and Technology
- Changchun
- P. R. China
- State Key Laboratory of Polymer Physics and Chemistry
| | - Yingjie Zhong
- China Japan Friendship Hospital
- Jilin University
- Changchun
- P. R. China
| | - Ming Chu
- School of Chemistry and Environmental Engineering
- Changchun University of Science and Technology
- Changchun
- P. R. China
- State Key Laboratory of Polymer Physics and Chemistry
| | - Wenyang Chang
- School of Chemistry and Environmental Engineering
- Changchun University of Science and Technology
- Changchun
- P. R. China
| | - Zhanhai Yao
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|
11
|
Feeney M, Hu X, Srinivasan R, Van N, Hunter M, Georgakoudi I, Thomas SW. UV and NIR-Responsive Layer-by-Layer Films Containing 6-Bromo-7-hydroxycoumarin Photolabile Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10877-10885. [PMID: 28967754 PMCID: PMC5647567 DOI: 10.1021/acs.langmuir.7b01469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 09/11/2017] [Indexed: 06/07/2023]
Abstract
This paper describes polyelectrolyte multilayer films prepared by the layer-by-layer (LbL) technique capable of undergoing dissolution upon exposure to either ultraviolet or near-infrared light. Film dissolution is driven by photochemical deprotection of a random methacrylic copolymer with two types of side chains: (i) 6-bromo-7-hydroxycoumarinyl esters, photocleavable groups that are known to have substantial two-photon photolysis cross sections, and (ii) cationic residues from the commercially available monomer N,N-dimethylaminoethyl methacrylate (DMAEMA). In addition, the dependence of stability of both unirradiated and irradiated films on pH provides experimental evidence for the necessity of disrupting both ion-pairing and hydrophobic interactions between polyelectrolytes to realize film dissolution. This work therefore provides both new fundamental insight regarding photolabile LbL films and expands their applied capabilities to nonlinear photochemical processes.
Collapse
Affiliation(s)
- Matthew
J. Feeney
- Department
of Chemistry, 62 Talbot
Avenue, Tufts University, Medford, Massachusetts 02155, United States
| | - Xiaoran Hu
- Department
of Chemistry, 62 Talbot
Avenue, Tufts University, Medford, Massachusetts 02155, United States
| | - Rati Srinivasan
- Department
of Chemistry, 62 Talbot
Avenue, Tufts University, Medford, Massachusetts 02155, United States
| | - Nhi Van
- Department
of Chemistry, 62 Talbot
Avenue, Tufts University, Medford, Massachusetts 02155, United States
| | - Martin Hunter
- Department
of Biomedical Engineering, 4 Colby Street, Tufts
University, Medford, Massachusetts 02155, United States
| | - Irene Georgakoudi
- Department
of Biomedical Engineering, 4 Colby Street, Tufts
University, Medford, Massachusetts 02155, United States
| | - Samuel W. Thomas
- Department
of Chemistry, 62 Talbot
Avenue, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
12
|
Bian Q, Jin M, Chen S, Xu L, Wang S, Wang G. Visible-light-responsive polymeric multilayers for trapping and release of cargoes via host–guest interactions. Polym Chem 2017. [DOI: 10.1039/c7py00946a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Visible-light-responsive layer-by-layer assembled polyelectrolyte multilayers are fabricated for reversible trapping and release of cargoes via azobenzene/cyclodextrin host–guest interactions.
Collapse
Affiliation(s)
- Qing Bian
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Minmin Jin
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Shuo Chen
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Liping Xu
- Research Center for Bioengineering & Sensing Technology
- University of Science and Technology Beijing
- 100083
- China
| | - Shutao Wang
- Laboratory of Bio-inspired Smart Interface Science
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- China
| | - Guojie Wang
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| |
Collapse
|
13
|
Reversible molecular adsorption of free-standing nano-composite film made from boehmite and poly(acrylic acid). Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.07.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|