1
|
Huang YT, Chen JY, Hsieh CA, Ezhumalai Y, Huang CJ, Yau S. Effects of Anion Coadsorption on the Self-Assembly of 11-Acryloylamino Undecanoic Acid on an Au(111) Electrode. ACS OMEGA 2024; 9:39827-39835. [PMID: 39346848 PMCID: PMC11425958 DOI: 10.1021/acsomega.4c05080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
11-acryloylamino undecanoic acid (AAUA) is a versatile polymerizable surfactant that has been applied to coat medical devices, and these applications can benefit from a fundamental understanding of its interaction with a metal substrate. Cyclic voltammetry and in situ scanning tunneling microscopy (STM) were used to examine the adsorption configuration of AAUA molecules on an ordered Au(111) electrode and their mutual interactions, as AAUA was adsorbed from a methanol dosing solution. In addition to the van der Waals force between the aliphatic groups, the hydrogen bonding between the carboxylic acid and acrylamide groups was also important to guide the spatial arrangement of AAUA admolecules on the Au electrode. The -COOH group of AAUA admolecule likely dissociated in neutral media to -COO-, which formed hydrogen bonds with H2PO4 - in phosphate buffer solution (PBS). This interaction between the AAUA admolecules and ions in the electrolyte resulted in different electrochemical characteristics observed in phosphate buffer solution (PBS) and potassium sulfate (K2SO4). Molecular-resolution STM imaging revealed distinctly different AAUA spatial structures on the Au electrode in PBS and K2SO4. Shifting the potential positively to 0.5 V (versus Ag/AgCl) led to lifting of the reconstructed Au(111) to the (1 × 1) phase and the dissolution of the ordered AAUA film, suggesting that the orientation of the AAUA admolecule was altered. The ordered AAUA adlayer could be partially recovered by shifting the potential negatively.
Collapse
Affiliation(s)
- Yi-Ting Huang
- Department
of Chemistry, National Central University, Chungli County, Taoyuan City 32049, Taiwan ROC
| | - Jia-Yin Chen
- Department
of Chemical and Materials Engineering, National
Central University, Chungli County, Taoyuan City 32049, Taiwan ROC
| | - Chiao-An Hsieh
- Department
of Chemistry, National Central University, Chungli County, Taoyuan City 32049, Taiwan ROC
| | - Yamuna Ezhumalai
- Department
of Chemistry, National Central University, Chungli County, Taoyuan City 32049, Taiwan ROC
| | - Chun-Jen Huang
- Department
of Chemical and Materials Engineering, National
Central University, Chungli County, Taoyuan City 32049, Taiwan ROC
- R&D
Center for Membrane Technology, Chung Yuan
Christian University, 200 Chung Pei Rd., Chungli County, Taoyuan
City 32023, Taiwan ROC
| | - Shuehlin Yau
- Department
of Chemistry, National Central University, Chungli County, Taoyuan City 32049, Taiwan ROC
| |
Collapse
|
2
|
Yokota K, Takahashi R, Ngan VT, Nishimura T, Kappl M, Fujii S, Yusa SI. Preparation of Water-Soluble Polyion Complex (PIC) Micelles with pH-Responsive Carboxybetaine Block. Macromol Rapid Commun 2024:e2400532. [PMID: 39090528 DOI: 10.1002/marc.202400532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/18/2024] [Indexed: 08/04/2024]
Abstract
A dual zwitterionic diblock copolymer (M100C100) consisting of poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC, M) and poly(3-((2-(methacryloyloxy)ethyl) dimethylammonio) propionate) (PCBMA, C) is synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. A double hydrophilic diblock copolymer (M100S100) consist of PMPC and anionic poly(3-sulfopropyl methacrylate potassium salt) (PMPS, S) is synthesized via RAFT. The degrees of polymerization of each block are 100. The charges of PMPC are neutralized intramolecularly. At neutral pH, the charges in PCBMA are also neutralized intramolecularly due to its carboxybetaine structure. Under acidic conditions, PCBMA exhibits polycation behavior as the pendant carboxy groups become protonated, forming cationic tertiary amine groups. PMPS shows permanent anionic nature independent of pH. Charge neutralized mixture of cationic M100C100 and anionic M100S100 in acidic aqueous solution forms water-soluble polyion complex (PIC) micelle owing to electrostatic attractive interactions. The core is composed of the cationic PCBMA and anionic PMPS blocks, with the PMPC blocks serving as shells that covered the core surface, forming spherical core-shell PIC micelles. Above pH 4 the pendant carboxy groups in PCBMA undergo deprotonation, transitioning to a zwitterionic state, thereby eliminating the cationic charge in PCBMA. Therefore, above pH 4 the PIC micelles are dissociated due to the disappearance of the charge interactions.
Collapse
Affiliation(s)
- Kaito Yokota
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| | - Rintaro Takahashi
- Department of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Vu Thi Ngan
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| | - Tomoya Nishimura
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| | - Michael Kappl
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Shin-Ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo, 671-2280, Japan
| |
Collapse
|
3
|
Chen JY, Huang KT, Yau S, Huang CJ. Rationale Design for Anchoring Pendant Groups of Zwitterionic Polymeric Medical Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13236-13246. [PMID: 38864376 PMCID: PMC11210289 DOI: 10.1021/acs.langmuir.4c01395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
A biocompatible and antifouling polymeric medical coating was developed through rational design for anchoring pendant groups for the modification of stainless steel. Zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) was copolymerized individually with three anchoring monomers of carboxyl acrylamides with different alkyl spacers, including acryloylglycine (2-AE), 6-acrylamidohexanoic acid (6-AH), and 11-acrylamidoundecanoic acid (11-AU). The carboxylic acid groups are responsible for the stable grafting of copolymers onto stainless steel via a coordinative interaction with metal oxides. Due to hydrophobic interaction and hydrogen bonding, the anchoring monomers enable the formation of self-assembling structures in solution and at a metallic interface, which can play an important role in the thin film formation and functionality of the coatings. Therefore, surface characterizations of anchoring monomers on stainless steel were conducted to analyze the packing density and strength of the intermolecular hydrogen bonds. The corresponding copolymers were synthesized, and their aggregate structures were assessed, showing micelle aggregation for copolymers with higher hydrophobic compositions. The synergistic effects of inter/intramolecular interactions and hydrophobicity of the anchoring monomers result in the diversity of the thickness, surface coverage, wettability, and friction of the polymeric coatings on stainless steel. More importantly, the antifouling properties of the coatings against bacteria and proteins were strongly correlated to thin film formation. Ultimately, the key lies in deciphering the molecular structure of the anchoring pendants in thin film formation and assessing the effectiveness of the coatings, which led to the development of medical coatings through the graft-onto approach.
Collapse
Affiliation(s)
- Jia-Yin Chen
- Department
of Chemical & Materials Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
- R&D
Center for Membrane Technology, Chung Yuan
Christian University, 200 Chung Pei Rd., Chung-Li City 32023, Taiwan
| | - Kang-Ting Huang
- Department
of Chemical & Materials Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
- R&D
Center for Membrane Technology, Chung Yuan
Christian University, 200 Chung Pei Rd., Chung-Li City 32023, Taiwan
| | - Shuehlin Yau
- Department
of Chemistry, National Central University, Jhong-Li, Taoyuan 320, Taiwan
| | - Chun-Jen Huang
- Department
of Chemical & Materials Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
- R&D
Center for Membrane Technology, Chung Yuan
Christian University, 200 Chung Pei Rd., Chung-Li City 32023, Taiwan
| |
Collapse
|
4
|
Bhowmik S, Pham TT, Takahashi R, Kim D, Matsuoka H, Ishihara K, Yusa SI. Preparation of Water-Soluble Polyion Complex (PIC) Micelles with Random Copolymers Containing Pendant Quaternary Ammonium and Sulfonate Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37235722 DOI: 10.1021/acs.langmuir.3c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cationic random copolymers (PCm) consisting of 2-(methacryloyloxy)ethyl phosphorylcholine (MPC; P) with methacroylcholine chloride (MCC; C) and anionic random copolymers (PSn) consisting of MPC and potassium 3-(methacryloyloxy)propanesulfonate (MPS; S) were prepared via a reversible addition-fragmentation chain transfer method. "m" and "n" represent the compositions (mol %) of the MCC and MPS units in the copolymers, respectively. The degrees of polymerization for the copolymers were 93-99. Water-soluble MPC unit contains a pendant zwitterionic phosphorylcholine group whose charges are neutralized in pendant groups. MCC and MPS units contain the cationic quaternary ammonium and anionic sulfonate groups, respectively. The stoichiometrically charge-neutralized mixture of a matched pair of PCm and PSn aqueous solutions resulted in the spontaneous formation of water-soluble PCm/PSn polyion complex (PIC) micelles. These PIC micelles have the MPC-rich surface and MCC/MPS core. These PIC micelles were characterized using 1H NMR, dynamic and static light scattering, and transmission electron microscopic measurements. The hydrodynamic radius of these PIC micelles depends on the mixing ratio of the oppositely charged random copolymers. The charge-neutralized mixture formed maximum-size PIC micelles.
Collapse
Affiliation(s)
- Shukanta Bhowmik
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Thu Thao Pham
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Rintaro Takahashi
- Department of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Dongwook Kim
- Department of Polymer Chemistry, Kyoto University, Kyoto 615-8510, Japan
| | - Hideki Matsuoka
- Department of Polymer Chemistry, Kyoto University, Kyoto 615-8510, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shin-Ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| |
Collapse
|
5
|
Kuperkar K, Patel D, Atanase LI, Bahadur P. Amphiphilic Block Copolymers: Their Structures, and Self-Assembly to Polymeric Micelles and Polymersomes as Drug Delivery Vehicles. Polymers (Basel) 2022; 14:4702. [PMID: 36365696 PMCID: PMC9657626 DOI: 10.3390/polym14214702] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 07/26/2023] Open
Abstract
Self-assembly of amphiphilic block copolymers display a multiplicity of nanoscale periodic patterns proposed as a dominant tool for the 'bottom-up' fabrication of nanomaterials with different levels of ordering. The present review article focuses on the recent updates to the self-association of amphiphilic block copolymers in aqueous media into varied core-shell morphologies. We briefly describe the block copolymers, their types, microdomain formation in bulk and micellization in selective solvents. We also discuss the characteristic features of block copolymers nanoaggregates viz., polymer micelles (PMs) and polymersomes. Amphiphilic block copolymers (with a variety of hydrophobic blocks and hydrophilic blocks; often polyethylene oxide) self-assemble in water to micelles/niosomes similar to conventional nonionic surfactants with high drug loading capacity. Double hydrophilic block copolymers (DHBCs) made of neutral block-neutral block or neutral block-charged block can transform one block to become hydrophobic under the influence of a stimulus (physical/chemical/biological), and thus induced amphiphilicity and display self-assembly are discussed. Different kinds of polymer micelles (viz. shell and core-cross-linked, core-shell-corona, schizophrenic, crew cut, Janus) are presented in detail. Updates on polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) are also provided. Polyion complexes (PICs) and polyion complex micelles (PICMs) are discussed. Applications of these block copolymeric micelles and polymersomes as nanocarriers in drug delivery systems are described.
Collapse
Affiliation(s)
- Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat 395 007, Gujarat, India
| | - Dhruvi Patel
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat 395 007, Gujarat, India
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Surat 395 007, Gujarat, India
| |
Collapse
|
6
|
Pham TT, Takahashi R, Pham TD, Yusa SI. Stable Water-soluble Polyion Complex Micelles Composed of Oppositely Charged Diblock Copolymers and Reinforced by Hydrophobic Interactions. CHEM LETT 2022. [DOI: 10.1246/cl.220241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Thu Thao Pham
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Rintaro Takahashi
- Department of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Tien Duc Pham
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Vietnam
| | - Shin-ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| |
Collapse
|
7
|
Polyion complex (PIC) micelles formed from oppositely charged styrene-based polyelectrolytes via electrostatic, hydrophobic, and π–π interactions. Polym J 2022. [DOI: 10.1038/s41428-022-00659-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Ahmad A, Nii T, Mori T, Katayama Y, Toyofuku M, Kishimura A. Nanostructure Control of an Antibiotic-based Polyion Complex Using a Series of Polycations with Different Side-chain Modification Rates. Macromol Rapid Commun 2022; 43:e2200316. [PMID: 35661316 DOI: 10.1002/marc.202200316] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/07/2022] [Indexed: 11/08/2022]
Abstract
Developing nanovehicles for delivering antibiotics is a promising approach to overcome the issue of antibiotic resistance. This study aims to utilize a polyion complex (PICs) system for developing novel nanovehicles for polymyxin-type antibiotics, which are known as last resort drugs. The formation of antibiotic-based PIC nanostructures was investigated using colistimethate sodium (CMS), an anionic cyclic short peptide, and a series of block catiomers bearing different amounts of guanidinium moieties on their side chains. In addition, only the modified catiomer, and not the unmodified catiomer, self-assembles with CMS, implying the importance of the guanidine moieties for enhancing the interaction between the catiomer and CMS via the formation of multivalent hydrogen bonding. Moreover, micellar and vesicular PIC nanostructures are selectively formed depending on the ratio of the guanidine residues. Size-exclusion chromatography revealed that the encapsulation efficiency of CMS is dependent on the guanidinium modification ratio. The antimicrobial activity of the PIC nanostructures is also confirmed, indicating that the complexation of CMS in the PICs and further release from the PICs successfully occurs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Asmariah Ahmad
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Teruki Nii
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takeshi Mori
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.,Center for Future Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoshiki Katayama
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.,Center for Future Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.,Center for Molecular Systems, Kyushu University 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.,Center for Advanced Medical Innovation, Kyushu University 3-1-1 Maedashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Rd., Chung Li, 32023, Taiwan, ROC
| | - Masanori Toyofuku
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Japan.,Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Japan
| | - Akihiro Kishimura
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.,Center for Future Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.,Center for Molecular Systems, Kyushu University 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.,RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
9
|
Pham TT, Pham TD, Yusa SI. pH- and Thermo-Responsive Water-Soluble Smart Polyion Complex (PIC) Vesicle with Polyampholyte Shells. Polymers (Basel) 2022; 14:1659. [PMID: 35566829 PMCID: PMC9099632 DOI: 10.3390/polym14091659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023] Open
Abstract
A diblock copolymer (P(VBTAC/NaSS)17-b-PAPTAC50; P(VS)17A50) composed of amphoteric random copolymer, poly(vinylbenzyl trimethylammonium chloride-co-sodium p-styrensunfonate) (P(VBTAC/NaSS); P(VS)) and cationic poly(3-(acrylamidopropyl) trimethylammonium chloride) (PAPTAC; A) block, and poly(acrylic acid) (PAAc49) were prepared via a reversible addition-fragmentation chain transfer radical polymerization. Scrips V, S, and A represent VBTAC, NaSS, and PAPTAC blocks, respectively. Water-soluble polyion complex (PIC) vesicles were formed by mixing P(VS)17A50 and PAAc49 in water under basic conditions through electrostatic interactions between the cationic PAPTAC block and PAAc49 with the deprotonated pendant carboxylate anions. The PIC vesicle collapsed under an acidic medium because the pendant carboxylate anions in PAAc49 were protonated to delete the anionic charges. The PIC vesicle comprises an ionic PAPTAC/PAAc membrane coated with amphoteric random copolymer P(VS)17 shells. The PIC vesicle showed upper critical solution temperature (UCST) behavior in aqueous solutions because of the P(VS)17 shells. The pH- and thermo-responsive behavior of the PIC vesicle were studied using 1H NMR, static and dynamic light scattering, and percent transmittance measurements. When the ratio of the oppositely charged polymers in PAPTAC/PAAc was equal, the size and light scattering intensity of the PIC vesicle reached maximum values. The hydrophilic guest molecules can be encapsulated into the PIC vesicle at the base medium and released under acidic conditions. It is expected that the PIC vesicles will be applied as a smart drug delivery system.
Collapse
Affiliation(s)
- Thu Thao Pham
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan;
| | - Tien Duc Pham
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Vietnam;
| | - Shin-ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan;
| |
Collapse
|
10
|
Fu X, Zhang Y, Jia X, Wang Y, Chen T. Research Progress on Typical Quaternary Ammonium Salt Polymers. Molecules 2022; 27:1267. [PMID: 35209058 PMCID: PMC8879950 DOI: 10.3390/molecules27041267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
Quaternary ammonium salt polymers, a kind of polyelectrolyte with a quaternary ammonium group, are widely used in traditional and emerging industries due to their good water-solubility, adjustable cationicity and molecular weight, high efficiency and nontoxicity. In this paper, firstly, the properties and several synthesis methods of typical quaternary ammonium salt monomers were introduced. Secondly, the research progress on the synthesis of polymers was summarized from the perspective of obtaining products with high molecular weight, narrow molecular weight distribution and high monomer conversion, and special functional polymers. Thirdly, the relationships between the structures and properties of the polymer were analyzed from the perspectives of molecular weight, charge density, structural stability, and microstructural regulation of the polymer chain unit. Fourthly, typical examples of quaternary ammonium salt polymers in the application fields of water treatment, daily chemicals, petroleum exploitation, papermaking, and textile printing and dyeing were listed. Finally, constructive suggestions were put forward on developing quaternary ammonium salt polymers with high molecular weights, strengthening the research on the relationships between the structures and their properties and pinpointing relevant application fields.
Collapse
Affiliation(s)
- Xingqin Fu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (X.F.); (X.J.); (Y.W.); (T.C.)
- College of Materials and Chemical Engineering, West Anhui University, Lu’an 237012, China
| | - Yuejun Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (X.F.); (X.J.); (Y.W.); (T.C.)
| | - Xu Jia
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (X.F.); (X.J.); (Y.W.); (T.C.)
| | - Yongji Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (X.F.); (X.J.); (Y.W.); (T.C.)
| | - Tingting Chen
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (X.F.); (X.J.); (Y.W.); (T.C.)
| |
Collapse
|
11
|
|
12
|
Kim D, Honda H, Matsuoka H, Yusa SI, Saruwatari Y. Morphology transition of polyion complex (PIC) micelles with carboxybetaine as a shell induced at different block ratios and their pH-responsivity. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-021-04921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Kitayama Y, Dosaka A, Harada A. Interfacial photocrosslinking of polymer particles possessing nucleobase photoreactive groups for hollow/capsule polymer fabrication. Polym Chem 2022. [DOI: 10.1039/d1py01438b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, polystyrene-based particles possessing nucleobases in polymer side chains were prepared and nucleobase groups were applied to the interfacial photocrosslinking as photoreactive groups for the first time for fabricating hollow/capsule particles.
Collapse
Affiliation(s)
- Yukiya Kitayama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Akali Dosaka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Atsushi Harada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
14
|
Kitayama Y, Harada A. Carboxy-Functionalized pH Responsive Capsule Polymer Particles Fabricated by Particulate Interfacial Photocrosslinking. J Mater Chem B 2022; 10:7570-7580. [DOI: 10.1039/d1tb02866a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
pH-responsive capsule particles show promise for various applications, such as self-healing materials, micro/nanoreactors, and drug delivery systems. Herein, carboxy-functionalized capsule polymer particles possessing neutral-alkali pH responsive controlled release capability were...
Collapse
|
15
|
Wang Y, Thies-Weesie DM, Bosman ED, van Steenbergen MJ, van den Dikkenberg J, Shi Y, Lammers T, van Nostrum CF, Hennink WE. Tuning the size of all-HPMA polymeric micelles fabricated by solvent extraction. J Control Release 2022; 343:338-346. [DOI: 10.1016/j.jconrel.2022.01.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
|
16
|
Kafetzi M, Pispas S. Effects of Hydrophobic Modifications on the Solution Self-Assembly of P(DMAEMA-co-QDMAEMA)- b-POEGMA Random Diblock Copolymers. Polymers (Basel) 2021; 13:polym13030338. [PMID: 33494531 PMCID: PMC7866081 DOI: 10.3390/polym13030338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 11/30/2022] Open
Abstract
In this work, the synthesis and the aqueous solution self-assembly behavior of novel partially hydrophobically modified poly(2-(dimethylamino) ethyl methacrylate)-b-poly(oligo(ethylelene glycol) methyl ether methacrylatetabel) pH and temperature responsive random diblock copolymers (P(DMAEMA-co-Q6/12DMAEMA)-b-POEGMA), are reported. The chemical modifications were accomplished via quaternization with 1-iodohexane (Q6) and 1-iodododecane (Q12) and confirmed by 1H-NMR spectroscopy. The successful synthesis of PDMAEMA-b-POEGMA precursor block copolymers was conducted by RAFT polymerization. The partial chemical modification of the diblocks resulted in the permanent attachment of long alkyl chains on the amine groups of the PDMAEMA block and the presence of tertiary and quaternary amines randomly distributed within the PDMAEMA block. Light scattering techniques confirmed that the increased hydrophobic character results in the formation of nanoaggregates of high mass and tunable pH and temperature response. The characteristics of the aggregates are also affected by the aqueous solution preparation protocol, the nature of the quaternizing agent and the quaternization degree. The incorporation of long alkyl chains allowed the encapsulation of indomethacin within the amphiphilic diblock copolymer aggregates. Nanostructures of increased size were detected due to the encapsulation of indomethacin into the interior of the hydrophobic domains. Drug release studies demonstrated that almost 50% of the encapsulated drug can be released on demand by aid of ultrasonication.
Collapse
|
17
|
Raychaudhuri R, Pandey A, Hegde A, Abdul Fayaz SM, Chellappan DK, Dua K, Mutalik S. Factors affecting the morphology of some organic and inorganic nanostructures for drug delivery: characterization, modifications, and toxicological perspectives. Expert Opin Drug Deliv 2020; 17:1737-1765. [PMID: 32878492 DOI: 10.1080/17425247.2020.1819237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction: In this review, we aim to highlight the impact of various processes and formulation variables influencing the characteristics of certain surfactant-based nanoconstructs for drug delivery. Areas covered: The review includes the discussion on processing parameters for the preparation of nanoconstructs, especially those made up of surfactants. Articles published in last 15 years (437) were reviewed, 381 articles were selected for data review and most appropriate articles (215) were included in article. Effect of variables such as surfactant concentration and type, membrane additives, temperature, and pH-dependent transitions on morphology has been highlighted along with effect of shape on nanoparticle uptake by cells. Various characterization techniques explored for these nanostructures with respect to size, morphology, lamellarity, distribution, etc., and a separate section on polymeric vesicles and the influence of block copolymers, type of block copolymer, control of block length, interaction of multiple block copolymers on the structure of polymersomes and chimeric nanostructures have been discussed. Finally, applications, modification, degradation, and toxicological aspects of these drug delivery systems have been highlighted. Expert opinion: Parameters influencing the morphology of micelles and vesicles can directly or indirectly affect the efficacy of small molecule cellular internalization as well as uptake in the case of biologicals.[Figure: see text].
Collapse
Affiliation(s)
- Ruchira Raychaudhuri
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal, Karnataka State, India
| | - Abhjieet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal, Karnataka State, India
| | - Aswathi Hegde
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal, Karnataka State, India
| | - Shaik Mohammad Abdul Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education , Manipal, Karnataka State, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University , Bukit Jalil, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney , Broadway, NSW, Australia
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal, Karnataka State, India
| |
Collapse
|
18
|
|
19
|
Zhou W, Wang J, Ding P, Guo X, Cohen Stuart MA, Wang J. Functional Polyion Complex Vesicles Enabled by Supramolecular Reversible Coordination Polyelectrolytes. Angew Chem Int Ed Engl 2019; 58:8494-8498. [DOI: 10.1002/anie.201903513] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/10/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Wenjuan Zhou
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Jiahua Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Peng Ding
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Martien A. Cohen Stuart
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
20
|
Zhou W, Wang J, Ding P, Guo X, Cohen Stuart MA, Wang J. Functional Polyion Complex Vesicles Enabled by Supramolecular Reversible Coordination Polyelectrolytes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wenjuan Zhou
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Jiahua Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Peng Ding
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Martien A. Cohen Stuart
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
21
|
Yu Y, Peng L, Liao G, Chen Z, Li C. Noncovalent Complexation of Amphotericin B with Poly(β-Amino Ester) Derivates for Treatment of C. Neoformans Infection. Polymers (Basel) 2019; 11:polym11020270. [PMID: 30960254 PMCID: PMC6419036 DOI: 10.3390/polym11020270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 01/15/2023] Open
Abstract
Our goal was to improve treatment outcomes for C. neoformans infection by designing nanocarriers that enhance drug-encapsulating capacity and stability. Thus, a noncovalent complex of methoxy poly(ethylene glycol)-poly(lactide)-poly(β-amino ester) (MPEG-PLA-PAE) and amphotericin B (AMB) was developed and characterized. The MPEG-PLA-PAE copolymer was synthesized by a Michael-type addition reaction; the copolymer was then used to prepare the AMB-loaded nanocomplex. AMB was in a highly aggregated state within complex cores. A high encapsulation efficiency (>90%) and stability of the AMB-loaded nanocomplex were obtained via electrostatic interaction between AMB and PAE blocks. This nanocomplex retained drug activity against C. neoformans in vitro. Compared with micellar AMB, the AMB nanocomplex was more efficient in terms of reducing C. neoformans burden in lungs, liver, and spleen, based on its improved biodistribution. The AMB/MPEG-PLA-PAE complex with enhanced drug-loading capacity and stability can serve as a platform for effective treatment of C. neoformans infection.
Collapse
Affiliation(s)
- Yang Yu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Li Peng
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Guojian Liao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Zhangbao Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
22
|
Poloxamers, poloxamines and polymeric micelles: Definition, structure and therapeutic applications in cancer. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1426-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
|
24
|
Guo X, Wang L, Wei X, Zhou S. Polymer-based drug delivery systems for cancer treatment. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28252] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xing Guo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 China
| | - Lin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 China
| | - Xiao Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education; School of Materials Science and Engineering, Southwest Jiaotong University; Chengdu 610031 China
| |
Collapse
|