1
|
Adachi J, Naito M, Sugiura S, Le NHT, Nishimura S, Huang S, Suzuki S, Kawamorita S, Komiya N, Hill JP, Ariga K, Naota T, Mori T. Coordination Amphiphile: Design of Planar-Coordinated Platinum Complexes for Monolayer Formation at an Air-Water Interface Based on Ligand Characteristics and Molecular Topology. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Junya Adachi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Masaya Naito
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Sho Sugiura
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Ngoc Ha-Thu Le
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shoma Nishimura
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shufang Huang
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shuichi Suzuki
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Soichiro Kawamorita
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Naruyoshi Komiya
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Jonathan P. Hill
- Functional Chromophores Group, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Katsuhiko Ariga
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-0827, Japan
- International Centre for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takeshi Naota
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Taizo Mori
- International Centre for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| |
Collapse
|
2
|
Shimizu T, Ding W, Kameta N. Soft-Matter Nanotubes: A Platform for Diverse Functions and Applications. Chem Rev 2020; 120:2347-2407. [PMID: 32013405 DOI: 10.1021/acs.chemrev.9b00509] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Self-assembled organic nanotubes made of single or multiple molecular components can be classified into soft-matter nanotubes (SMNTs) by contrast with hard-matter nanotubes, such as carbon and other inorganic nanotubes. To date, diverse self-assembly processes and elaborate template procedures using rationally designed organic molecules have produced suitable tubular architectures with definite dimensions, structural complexity, and hierarchy for expected functions and applications. Herein, we comprehensively discuss every functions and possible applications of a wide range of SMNTs as bulk materials or single components. This Review highlights valuable contributions mainly in the past decade. Fifteen different families of SMNTs are discussed from the viewpoints of chemical, physical, biological, and medical applications, as well as action fields (e.g., interior, wall, exterior, whole structure, and ensemble of nanotubes). Chemical applications of the SMNTs are associated with encapsulating materials and sensors. SMNTs also behave, while sometimes undergoing morphological transformation, as a catalyst, template, liquid crystal, hydro-/organogel, superhydrophobic surface, and micron size engine. Physical functions pertain to ferro-/piezoelectricity and energy migration/storage, leading to the applications to electrodes or supercapacitors, and mechanical reinforcement. Biological functions involve artificial chaperone, transmembrane transport, nanochannels, and channel reactors. Finally, medical functions range over drug delivery, nonviral gene transfer vector, and virus trap.
Collapse
Affiliation(s)
- Toshimi Shimizu
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Wuxiao Ding
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| |
Collapse
|
3
|
Li R, Muraoka T, Kinbara K. Thermo-driven self-assembly of a PEG-containing amphiphile in a bilayer membrane. RSC Adv 2020; 10:25758-25762. [PMID: 35518572 PMCID: PMC9055338 DOI: 10.1039/d0ra03920a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/01/2020] [Indexed: 11/23/2022] Open
Abstract
Self-assembly of lipid molecules in a plasma membrane, namely lipid raft formation, is involved in various dynamic functions of cells. Inspired by the raft formation observed in the cells, here we studied thermally induced self-assembly of a synthetic amphiphile, bola-AkDPA, in a bilayer membrane. The synthetic amphiphile consists of a hydrophobic unit including fluorescent aromatic and aliphatic components and hydrophilic tetraethylene glycol chains attached at both ends of the hydrophobic unit. In a polar solvent, bola-AkDPA formed aggregates to show excimer emission. In a lipid bilayer membrane, bola-AkDPA showed intensified excimer emission upon increase of its concentration or elevation of the temperature; bola-type amphiphiles containing oligoethylene glycol chains likely tend to form self-assemblies in a bilayer membrane triggered by thermal stimuli. A synthetic multi-block amphiphile containing oligoethylene glycol chains formed a self-assembly in a bilayer membrane triggered by thermal stimuli.![]()
Collapse
Affiliation(s)
- Rui Li
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai
- Japan
| | - Takahiro Muraoka
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Kazushi Kinbara
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai
- Japan
- Department of Life Science and Technology
| |
Collapse
|
5
|
Li R, Muraoka T, Kinbara K. Thermally-induced lateral assembly of a PEG-containing amphiphile triggering vesicle budding. Chem Commun (Camb) 2017; 53:11662-11665. [PMID: 29018844 DOI: 10.1039/c7cc06489f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A macrocyclic amphiphile consisting of a thermo-responsive octaethylene glycol chain with hydrophobic aromatic and aliphatic units undergoes lateral self-assembly in a liquid-disordered-state phospholipid bilayer membrane upon heating, which further leads to vesicle budding.
Collapse
Affiliation(s)
- Rui Li
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | | | | |
Collapse
|
6
|
Kameta N, Ding W, Dong J. Soft Nanotubes Derivatized with Short PEG Chains for Thermally Controllable Extraction and Separation of Peptides. ACS OMEGA 2017; 2:6143-6150. [PMID: 30023764 PMCID: PMC6044993 DOI: 10.1021/acsomega.7b00838] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/13/2017] [Indexed: 06/08/2023]
Abstract
By means of a two-step self-assembly process involving three components, including short poly(ethylene glycol) (PEG) chains, we produced two different types of molecular monolayer nanotubes: nanotubes densely functionalized with PEG chains on the outer surface and nanotubes densely functionalized with PEG chains in the nanochannel. Turbidity measurements and fluorescence spectroscopy with an environmentally responsive probe suggested that the PEG chains underwent dehydration when the nanotubes were heated above 44-57 °C and rehydration when they were cooled back to 25 °C. Dehydration of the exterior or interior PEG chains rendered them hydrophobic and thus able to effectively extract hydrophobic amino acids from the bulk solution. Rehydration of the PEG chains restored their hydrophilicity, thus allowing the extracted amino acids to be squeezed out into the bulk solutions. The nanotubes with exterior PEG chains exhibited selectivity for all of the hydrophobic amino acids, whereas the interior PEG chains were selective for hydrophobic amino acids with an aliphatic side chain over hydrophobic amino acids with an aromatic side chain. The higher selectivity of the latter system is attributable that the extraction and back-extraction processes involve encapsulation and transportation of the amino acids in the nanotube channel. As the result, the latter system was useful for separation of peptides that differed by only a single amino acid, whereas the former system showed no such separation ability.
Collapse
Affiliation(s)
- Naohiro Kameta
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science
and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Wuxiao Ding
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science
and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Jiuchao Dong
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science
and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|