1
|
González-Ramírez EJ, García-Arribas AB, Artetxe I, Shaw WA, Goñi FM, Alonso A, Jiménez-Rojo N. (1-Deoxy)ceramides in bilayers containing sphingomyelin and cholesterol. Colloids Surf B Biointerfaces 2024; 243:114155. [PMID: 39137529 DOI: 10.1016/j.colsurfb.2024.114155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
The discovery of a novel sphingolipid subclass, the (1-deoxy)sphingolipids, which lack the 1-hydroxy group, attracted considerable attention in the last decade, mainly due to their involvement in disease. They differed in their physico-chemical properties from the canonical (or 1-hydroxy) sphingolipids and they were more toxic when accumulated in cells, inducing neurodegeneration and other dysfunctions. (1-Deoxy)ceramides, (1-deoxy)dihydroceramides, and (1- deoxymethyl)dihydroceramides, the latter two containing a saturated sphingoid chain, have been studied in this work using differential scanning calorimetry, confocal fluorescence and atomic force microscopy, to evaluate their behavior in bilayers composed of mixtures of three or four lipids. When compared to canonical ceramides (Cer), a C16:0 (1-deoxy)Cer shows a lower miscibility in mixtures of the kind C16:0 sphingomyelin/cholesterol/XCer, where XCer is any (1-deoxy)ceramide, giving rise to the coexistence of a liquid-ordered phase and a gel phase. The latter resembles, in terms of thermotropic behavior and nanomechanical resistance, the gel phase of the C16:0 sphingomyelin/cholesterol/C16:0 Cer mixture [Busto et al., Biophys. J. 2014, 106, 621-630]. Differences are seen between the various C16:0 XCer under study in terms of nanomechanical resistance, bilayer thickness and bilayer topography. When examined in a more fluid environment (bilayers based on C24:1 SM), segregated gel phases are still present. Probably related to such lateral separation, XCer preserve the capacity for membrane permeation, but their effects are significantly lower than those of canonical ceramides. Moreover, C24:1 XCer show significantly lower membrane permeation capacity than their C16:0 counterparts. The above data may be relevant in the pathogenesis of certain sphingolipid-related diseases, including certain neuropathies, diabetes, and glycogen storage diseases.
Collapse
Affiliation(s)
- E J González-Ramírez
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry, University of the Basque Country, Leioa, 48940, Spain
| | - A B García-Arribas
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry, University of the Basque Country, Leioa, 48940, Spain
| | - I Artetxe
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry, University of the Basque Country, Leioa, 48940, Spain
| | - W A Shaw
- Avanti Polar Lipids, Alabaster, AL, USA
| | - F M Goñi
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry, University of the Basque Country, Leioa, 48940, Spain
| | - A Alonso
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry, University of the Basque Country, Leioa, 48940, Spain.
| | - N Jiménez-Rojo
- Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry, University of the Basque Country, Leioa, 48940, Spain.
| |
Collapse
|
2
|
Inimitable Impacts of Ceramides on Lipid Rafts Formed in Artificial and Natural Cell Membranes. MEMBRANES 2022; 12:membranes12080727. [PMID: 35893445 PMCID: PMC9330320 DOI: 10.3390/membranes12080727] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/02/2023]
Abstract
Ceramide is the simplest precursor of sphingolipids and is involved in a variety of biological functions ranging from apoptosis to the immune responses. Although ceramide is a minor constituent of plasma membranes, it drastically increases upon cellular stimulation. However, the mechanistic link between ceramide generation and signal transduction remains unknown. To address this issue, the effect of ceramide on phospholipid membranes has been examined in numerous studies. One of the most remarkable findings of these studies is that ceramide induces the coalescence of membrane domains termed lipid rafts. Thus, it has been hypothesised that ceramide exerts its biological activity through the structural alteration of lipid rafts. In the present article, we first discuss the characteristic hydrogen bond functionality of ceramides. Then, we showed the impact of ceramide on the structures of artificial and cell membranes, including the coalescence of the pre-existing lipid raft into a large patch called a signal platform. Moreover, we proposed a possible structure of the signal platform, in which sphingomyelin/cholesterol-rich and sphingomyelin/ceramide-rich domains coexist. This structure is considered to be beneficial because membrane proteins and their inhibitors are separately compartmentalised in those domains. Considering the fact that ceramide/cholesterol content regulates the miscibility of those two domains in model membranes, the association and dissociation of membrane proteins and their inhibitors might be controlled by the contents of ceramide and cholesterol in the signal platform.
Collapse
|
3
|
Bergami M, Santana ALD, Charry Martinez J, Reyes A, Coutinho K, Varella MTDN. Multicomponent Quantum Mechanics/Molecular Mechanics Study of Hydrated Positronium. J Phys Chem B 2022; 126:2699-2714. [PMID: 35377644 DOI: 10.1021/acs.jpcb.1c10124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We propose a model for solvated positronium (Ps) atoms in water, based on the sequential quantum mechanics/molecular mechanics (s-QM/MM) protocol. We developed a Lennard-Jones force field to account for Ps-water interactions in the MM step. The repulsive term was obtained from a previously reported model for the solvated electron, while the dispersion constant was derived from the Slater-Kirkwood formula. The force field was employed in classical Monte Carlo (MC) simulations to generate Ps-solvent configurations in the NpT ensemble, while the quantum properties were computed with the any-particle molecular orbital method in the subsequent QM step. Our approach is general, as it can be applied to other liquids and materials. One basically needs to describe the solvated electron in the environment of interest to obtain the Ps solvation model. The thermodynamical properties computed from the MC simulations point out similarities between the solvation of Ps and noble gas atoms, hydrophobic solutes that form clathrate structures. We performed convergence tests for the QM step, with particular attention to the choice of basis set and expansion centers for the positronic and electronic subsystems. Our largest model was composed of the Ps atom and 22 water molecules in the QM region, corresponding to the first solvation shell, surrounded by 128 molecules described as point charges. The mean electronic and positronic vertical detachment energies were (4.73 ± 0.04) eV and (5.33 ± 0.04) eV, respectively. The latter estimates were computed with Koopmans' theorem corrected by second-order self-energies, for a set of statistically uncorrelated MC configurations. While the Hartree-Fock wave functions do not properly account for the annihilation rates, they were useful for numerical tests, pointing out that annihilation is more sensitive to the choice of basis sets and expansion centers than the detachment energies. We further explored a model with reduced solute cavity size by changing the Ps-solvent force field. Although the pick-off annihilation lifetimes were affected by the cavity size, essentially the same conclusions were drawn from both models.
Collapse
Affiliation(s)
- Mateus Bergami
- Instituto de Física, Universidade de São Paulo, Rua do Matão 1371 CP 66318, CEP 05508-090 São Paulo, SP, Brazil
| | - Andre L D Santana
- Instituto de Física, Universidade de São Paulo, Rua do Matão 1371 CP 66318, CEP 05508-090 São Paulo, SP, Brazil
| | - Jorge Charry Martinez
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Andres Reyes
- Department of Chemistry, Universidad Nacional de Colombia, Av. Cra. 30 #45-03, 111321 Bogotá, Colombia
| | - Kaline Coutinho
- Instituto de Física, Universidade de São Paulo, Rua do Matão 1371 CP 66318, CEP 05508-090 São Paulo, SP, Brazil
| | - Márcio T do N Varella
- Instituto de Física, Universidade de São Paulo, Rua do Matão 1371 CP 66318, CEP 05508-090 São Paulo, SP, Brazil
| |
Collapse
|
4
|
Vernerey FJ, Lalitha Sridhar S, Muralidharan A, Bryant SJ. Mechanics of 3D Cell-Hydrogel Interactions: Experiments, Models, and Mechanisms. Chem Rev 2021; 121:11085-11148. [PMID: 34473466 DOI: 10.1021/acs.chemrev.1c00046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogels are highly water-swollen molecular networks that are ideal platforms to create tissue mimetics owing to their vast and tunable properties. As such, hydrogels are promising cell-delivery vehicles for applications in tissue engineering and have also emerged as an important base for ex vivo models to study healthy and pathophysiological events in a carefully controlled three-dimensional environment. Cells are readily encapsulated in hydrogels resulting in a plethora of biochemical and mechanical communication mechanisms, which recapitulates the natural cell and extracellular matrix interaction in tissues. These interactions are complex, with multiple events that are invariably coupled and spanning multiple length and time scales. To study and identify the underlying mechanisms involved, an integrated experimental and computational approach is ideally needed. This review discusses the state of our knowledge on cell-hydrogel interactions, with a focus on mechanics and transport, and in this context, highlights recent advancements in experiments, mathematical and computational modeling. The review begins with a background on the thermodynamics and physics fundamentals that govern hydrogel mechanics and transport. The review focuses on two main classes of hydrogels, described as semiflexible polymer networks that represent physically cross-linked fibrous hydrogels and flexible polymer networks representing the chemically cross-linked synthetic and natural hydrogels. In this review, we highlight five main cell-hydrogel interactions that involve key cellular functions related to communication, mechanosensing, migration, growth, and tissue deposition and elaboration. For each of these cellular functions, recent experiments and the most up to date modeling strategies are discussed and then followed by a summary of how to tune hydrogel properties to achieve a desired functional cellular outcome. We conclude with a summary linking these advancements and make the case for the need to integrate experiments and modeling to advance our fundamental understanding of cell-matrix interactions that will ultimately help identify new therapeutic approaches and enable successful tissue engineering.
Collapse
Affiliation(s)
- Franck J Vernerey
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States.,Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States
| | - Shankar Lalitha Sridhar
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States
| | - Archish Muralidharan
- Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States
| | - Stephanie J Bryant
- Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States.,Department of Chemical and Biological Engineering, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309-0596, United States.,BioFrontiers Institute, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309-0596, United States
| |
Collapse
|
5
|
Lipid Self-Assemblies under the Atomic Force Microscope. Int J Mol Sci 2021; 22:ijms221810085. [PMID: 34576248 PMCID: PMC8467407 DOI: 10.3390/ijms221810085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
Lipid model membranes are important tools in the study of biophysical processes such as lipid self-assembly and lipid–lipid interactions in cell membranes. The use of model systems to adequate and modulate complexity helps in the understanding of many events that occur in cellular membranes, that exhibit a wide variety of components, including lipids of different subfamilies (e.g., phospholipids, sphingolipids, sterols…), in addition to proteins and sugars. The capacity of lipids to segregate by themselves into different phases at the nanoscale (nanodomains) is an intriguing feature that is yet to be fully characterized in vivo due to the proposed transient nature of these domains in living systems. Model lipid membranes, instead, have the advantage of (usually) greater phase stability, together with the possibility of fully controlling the system lipid composition. Atomic force microscopy (AFM) is a powerful tool to detect the presence of meso- and nanodomains in a lipid membrane. It also allows the direct quantification of nanomechanical resistance in each phase present. In this review, we explore the main kinds of lipid assemblies used as model membranes and describe AFM experiments on model membranes. In addition, we discuss how these assemblies have extended our knowledge of membrane biophysics over the last two decades, particularly in issues related to the variability of different model membranes and the impact of supports/cytoskeleton on lipid behavior, such as segregated domain size or bilayer leaflet uncoupling.
Collapse
|
6
|
González-Ramírez EJ, García-Arribas AB, Sot J, Goñi FM, Alonso A. C24:0 and C24:1 sphingolipids in cholesterol-containing, five- and six-component lipid membranes. Sci Rep 2020; 10:14085. [PMID: 32839481 PMCID: PMC7445262 DOI: 10.1038/s41598-020-71008-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
The biophysical properties of sphingolipids containing lignoceric (C24:0) or nervonic (C24:1) fatty acyl residues have been studied in multicomponent lipid bilayers containing cholesterol (Chol), by means of confocal microscopy, differential scanning calorimetry and atomic force microscopy. Lipid membranes composed of dioleoyl phosphatidylcholine and cholesterol were prepared, with the addition of different combinations of ceramides (C24:0 and/or C24:1) and sphingomyelins (C24:0 and/or C24:1). Results point to C24:0 sphingolipids, namely lignoceroyl sphingomyelin (lSM) and lignoceroyl ceramide (lCer), having higher membrane rigidifying properties than their C24:1 homologues (nervonoyl SM, nSM, or nervonoyl Cer, nCer), although with a similar strong capacity to induce segregated gel phases. In the case of the lSM-lCer multicomponent system, the segregated phases have a peculiar fibrillar or fern-like morphology. Moreover, the combination of C24:0 and C24:1 sphingolipids generates interesting events, such as a generalized bilayer dynamism/instability of supported planar bilayers. In some cases, these sphingolipids give rise to exothermic curves in thermograms. These peculiar features were not present in previous studies of C24:1 combined with C16:0 sphingolipids. Conclusions of our study point to nSM as a key factor governing the relative distribution of ceramides when both lCer and nCer are present. The data indicate that lCer could be easier to accommodate in multicomponent bilayers than its C16:0 counterpart. These results are relevant for events of membrane platform formation, in the context of sphingolipid-based signaling cascades.
Collapse
Affiliation(s)
- Emilio J González-Ramírez
- Instituto Biofisika (CSIC, UPV/EHU), 48940, Leioa, Bilbao, Basque Country, Spain.,Departamento de Bioquímica, University of the Basque Country (UPV/EHU), 48940, Bilbao, Spain
| | - Aritz B García-Arribas
- Instituto Biofisika (CSIC, UPV/EHU), 48940, Leioa, Bilbao, Basque Country, Spain. .,Departamento de Bioquímica, University of the Basque Country (UPV/EHU), 48940, Bilbao, Spain.
| | - Jesús Sot
- Instituto Biofisika (CSIC, UPV/EHU), 48940, Leioa, Bilbao, Basque Country, Spain.,Departamento de Bioquímica, University of the Basque Country (UPV/EHU), 48940, Bilbao, Spain
| | - Félix M Goñi
- Instituto Biofisika (CSIC, UPV/EHU), 48940, Leioa, Bilbao, Basque Country, Spain. .,Departamento de Bioquímica, University of the Basque Country (UPV/EHU), 48940, Bilbao, Spain.
| | - Alicia Alonso
- Instituto Biofisika (CSIC, UPV/EHU), 48940, Leioa, Bilbao, Basque Country, Spain.,Departamento de Bioquímica, University of the Basque Country (UPV/EHU), 48940, Bilbao, Spain
| |
Collapse
|
7
|
Effective association of ceramide-coassembled lipid nanovehicles with stratum corneum for improved skin barrier function and enhanced skin penetration. Int J Pharm 2020; 579:119162. [DOI: 10.1016/j.ijpharm.2020.119162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/30/2020] [Accepted: 02/16/2020] [Indexed: 11/22/2022]
|
8
|
Gironi B, Lapini A, Ragnoni E, Calvagna C, Paolantoni M, Morresi A, Sassi P. Free volume and dynamics in a lipid bilayer. Phys Chem Chem Phys 2019; 21:23169-23178. [PMID: 31612182 DOI: 10.1039/c9cp03451j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The lateral diffusion of lipids and of small molecules inside a membrane is strictly related to the arrangement of acyl chains and to their mobility. In this study, we use FTIR and time resolved 2D-IR spectroscopic techniques to characterize the structure and dynamics of the hydrophobic region of palmitoyl-oleylphosphatidylcholine/cholesterol vesicles dispersed in water/dimethylsulfoxide solutions. By means of a non-polar probe, hexacarbonyl tungsten, we monitor the distribution of free volumes inside the bilayer and the conformational dynamics of hydrophobic tails in relation to the different compositions of the membrane or the different compositions of the solvent. Despite the important structural changes induced by the presence of DMSO in the solvating medium, the picosecond dynamics of the membrane is preserved under the different conditions.
Collapse
Affiliation(s)
- Beatrice Gironi
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.
| | | | | | | | | | | | | |
Collapse
|
9
|
Axpe E, Chan D, Offeddu GS, Chang Y, Merida D, Hernandez HL, Appel EA. A Multiscale Model for Solute Diffusion in Hydrogels. Macromolecules 2019; 52:6889-6897. [PMID: 31579160 PMCID: PMC6764024 DOI: 10.1021/acs.macromol.9b00753] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/13/2019] [Indexed: 12/27/2022]
Abstract
The number of biomedical applications of hydrogels is increasing rapidly on account of their unique physical, structural, and mechanical properties. The utility of hydrogels as drug delivery systems or tissue engineering scaffolds critically depends on the control of diffusion of solutes through the hydrogel matrix. Predicting or even modeling this diffusion is challenging due to the complex structure of hydrogels. Currently, the diffusivity of solutes in hydrogels is typically modeled by one of three main theories proceeding from distinct diffusion mechanisms: (i) hydrodynamic, (ii) free volume, and (iii) obstruction theory. Yet, a comprehensive predictive model is lacking. Thus, time and capital-intensive trial-and-error procedures are used to test the viability of hydrogel applications. In this work, we have developed a model for the diffusivity of solutes in hydrogels combining the three main theoretical frameworks, which we call the multiscale diffusion model (MSDM). We verified the MSDM by analyzing the diffusivity of dextran of different sizes in a series of poly(ethylene glycol) (PEG) hydrogels with distinct mesh sizes. We measured the subnanoscopic free volume by positron annihilation lifetime spectroscopy (PALS) to characterize the physical hierarchy of these materials. In addition, we performed a meta-analysis of literature data from previous studies on the diffusion of solutes in hydrogels. The model presented outperforms traditional models in predicting solute diffusivity in hydrogels and provides a practical approach to predicting the transport properties of solutes such as drugs through hydrogels used in many biomedical applications.
Collapse
Affiliation(s)
- Eneko Axpe
- Department
of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
- Space
Biosciences Division, NASA-Ames Research Center, Moffett Field, California 94035, United States
| | - Doreen Chan
- Department
of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Giovanni S. Offeddu
- Department
of Biological Engineering, Massachusetts
Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02138, United States
| | - Yin Chang
- Department
of Engineering, Cambridge University, 11 JJ Thomson Ave., Cambridge CB3 0FF, U.K.
| | - David Merida
- Department
of Electricity and Electronics, University
of the Basque Country UPV/EHU, Sarriena s/n, Bilbao 48940, Spain
| | - Hector Lopez Hernandez
- Department
of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Eric A. Appel
- Department
of Materials Science & Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| |
Collapse
|
10
|
Siavashi R, Phaterpekar T, Leung SSW, Alonso A, Goñi FM, Thewalt JL. Lamellar Phases Composed of Phospholipid, Cholesterol, and Ceramide, as Studied by 2H NMR. Biophys J 2019; 117:296-306. [PMID: 31279446 PMCID: PMC6702149 DOI: 10.1016/j.bpj.2019.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/23/2019] [Accepted: 05/07/2019] [Indexed: 11/28/2022] Open
Abstract
Sphingolipids constitute a significant fraction of cellular plasma membrane lipid content. Among sphingolipids, ceramide levels are usually very low. However, in some cell processes like apoptosis, cell membrane ceramide levels increase markedly because of the activation of enzymes like acid sphingomyelinase. This increase can change the physical state of the membrane by promoting molecular order and inducing solid-ordered (So) phase domains. This effect has been observed in a previous 2H NMR study on membranes consisting of palmitoyl sphingomyelin (PSM) and palmitoyl ceramide (PCer). Cholesterol (Chol), too, is present at high concentrations in mammalian plasma membranes and has a favorable interaction with sphingomyelin (SM), together forming domains in the liquid-ordered phase in model membranes. There are reports that Chol is able to displace ceramide (Cer) in SM bilayers and abolish the So phase domains formed by SM:Cer. This ability of Chol appears to be concentration dependent; in membranes with low Chol and high Cer contents, So phase domains rich in Cer coexist with the continuous fluid phase of the membrane. Here, we studied the effect of increasing PCer concentration in PSM:Chol bilayers, using 2H NMR. Chol:PCer mole ratios were 3:1, 3:2, and 3:3, at a fixed 7:3 phospholipid:cholesterol mol ratio. Both PSM and PCer were monitored in separate samples for changes in their physical state by introducing a perdeuterated palmitoyl chain in either molecule. Moreover, the effect of replacing PSM with DPPC was investigated to test the impact on membrane phase behavior of replacing the sphingosine with a palmitoylated glycerol backbone. We found that PCer can increase acyl chain order in both PSM:Chol and DPPC:Chol bilayers. Especially in bilayers with Chol:PCer 1:1 molar ratios, PCer induces highly stable So phase domains in both PSM and DPPC bilayers near 37°C. However, PCer has a more pronounced ordering effect on PSM compared to DPPC bilayers.
Collapse
Affiliation(s)
- Reza Siavashi
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Tejas Phaterpekar
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sherry S W Leung
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alicia Alonso
- Instituto Biofisika, University of the Basque Country/Spanish National Research Council (CSIC), Leioa, Spain; Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Félix M Goñi
- Instituto Biofisika, University of the Basque Country/Spanish National Research Council (CSIC), Leioa, Spain; Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Jenifer L Thewalt
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
11
|
González-Ramírez EJ, Artetxe I, García-Arribas AB, Goñi FM, Alonso A. Homogeneous and Heterogeneous Bilayers of Ternary Lipid Compositions Containing Equimolar Ceramide and Cholesterol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5305-5315. [PMID: 30924341 DOI: 10.1021/acs.langmuir.9b00324] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cell membranes have been proposed to be laterally inhomogeneous, particularly in the case of mammalian cells, due to the presence of "domains" enriched in sphingolipids and cholesterol (Chol). Among membrane sphingolipids, sphingomyelin (SM) in the cell plasma membrane is known to be degraded to ceramide (Cer) by acid sphingomyelinases under stress conditions. Since cholesterol (Chol) is abundant in the plasma membrane, the study of ternary mixtures SM:Chol:Cer is interesting from the point of view of membrane biophysics, and it might be physiologically relevant. In previous studies, we have described the homogeneous gel phase formed by phospholipid:Chol:Cer at 54:23:23 mol ratios, where phospholipid was either SM or dipalmitoylphosphatidylcholine (DPPC). We now provide new data, based on trans-parinaric acid and diphenylhexatriene fluorescence, supporting that the gel phase includes all three components in a single bilayer. The main question addressed in this paper is the stability of the ternary gel phase when bilayer composition is changed, specifically when the SM proportion is varied. To this aim, we have prepared bilayers of composition phospholipid:Chol:Cer at X:Y:Y ratios, in which phospholipid increased between 54 and 70 mol %. The N-palmitoyl derivatives of SM (pSM) and Cer (pCer) have been used. We observe that for X = 54 or 60 mol %, a gel phase is clearly predominant. However, when the proportion of phospholipid increases beyond 60 mol %, i.e., in 66:17:17 or 70:15:15 mixtures, a lateral phase separation occurs at the micrometer scale. These data can be interpreted in terms of a pCer:Chol interaction, that would predominate at the lower phospholipid concentrations. The putative pCer:Chol complexes (or nanodomains) would mix well with the phospholipid. At the higher SM concentrations pSM:pCer and pSM:Chol interactions would become more important, giving rise to the coexisting gel and liquid-ordered phases respectively. Heterogeneity, or lateral phase separation, occurs more easily with pSM than with DPPC, indicating a higher affinity of SM over DPPC for Chol or Cer. The observation that heterogeneity, or lateral phase separation, occurs more easily with pSM than with DPPC, indicates a higher affinity of SM over DPPC for Chol or Cer, and can be related to cell regulation through the sphingolipid signaling pathway.
Collapse
Affiliation(s)
- Emilio J González-Ramírez
- Instituto Biofisika (CSIC, UPV/EHU), and Departamento de Bioquímica , Universidad del País Vasco , 48940 Leioa , Spain
| | - Ibai Artetxe
- Instituto Biofisika (CSIC, UPV/EHU), and Departamento de Bioquímica , Universidad del País Vasco , 48940 Leioa , Spain
| | - Aritz B García-Arribas
- Instituto Biofisika (CSIC, UPV/EHU), and Departamento de Bioquímica , Universidad del País Vasco , 48940 Leioa , Spain
| | - Félix M Goñi
- Instituto Biofisika (CSIC, UPV/EHU), and Departamento de Bioquímica , Universidad del País Vasco , 48940 Leioa , Spain
| | - Alicia Alonso
- Instituto Biofisika (CSIC, UPV/EHU), and Departamento de Bioquímica , Universidad del País Vasco , 48940 Leioa , Spain
| |
Collapse
|
12
|
Abstract
Ceramides are sphingolipids containing a sphingosine or a related base, to which a fatty acid is linked through an amide bond. When incorporated into a lipid bilayer, ceramides exhibit a number of properties not shared by almost any other membrane lipid: Ceramides ( a) are extremely hydrophobic and thus cannot exist in suspension in aqueous media; ( b) increase the molecular order (rigidity) of phospholipids in membranes; ( c) give rise to lateral phase separation and domain formation in phospholipid bilayers; ( d) possess a marked intrinsic negative curvature that facilitates formation of inverted hexagonal phases; ( e) make bilayers and cell membranes permeable to small and large (i.e., protein-size) solutes; and ( f) promote transmembrane (flip-flop) lipid motion. Unfortunately, there is hardly any link between the physical studies reviewed here and the mass of biological and clinical studies on the effects of ceramides in health and disease.
Collapse
Affiliation(s)
- Alicia Alonso
- Instituto Biofisika [University of the Basque Country and Spanish National Research Council (CSIC)], 48940 Leioa, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain;,
| | - Félix M. Goñi
- Instituto Biofisika [University of the Basque Country and Spanish National Research Council (CSIC)], 48940 Leioa, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain;,
| |
Collapse
|
13
|
Arsov Z, González-Ramírez EJ, Goñi FM, Tristram-Nagle S, Nagle JF. Phase behavior of palmitoyl and egg sphingomyelin. Chem Phys Lipids 2018; 213:102-110. [PMID: 29689259 DOI: 10.1016/j.chemphyslip.2018.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/02/2018] [Accepted: 03/06/2018] [Indexed: 01/28/2023]
Abstract
Despite the biological significance of sphingomyelins (SMs), there is far less structural information available for SMs compared to glycerophospholipids. Considerable confusion exists in the literature regarding even the phase behavior of SM bilayers. This work studies both palmitoyl (PSM) and egg sphingomyelin (ESM) in the temperature regime from 3 °C to 55 °C using X-ray diffraction and X-ray diffuse scattering on hydrated, oriented thick bilayer stacks. We observe clear evidence for a ripple phase for ESM in a large temperature range from 3 °C to the main phase transition temperature (TM) of ∼38 °C. This unusual stability of the ripple phase was not observed for PSM, which was in a gel phase at 3 °C, with a gel-to-ripple transition at ∼24 °C and a ripple-to-fluid transition at ∼41 °C. We also report structural results for all phases. In the gel phase at 3 °C, PSM has chains tilted by ∼30° with an area/lipid ∼45 Å2 as determined by wide angle X-ray scattering. The ripple phases for both PSM and ESM have temperature dependent ripple wavelengths that are ∼145 Å near 30 °C. In the fluid phase, our electron density profiles combined with volume measurements allow calculation of area/lipid to be ∼64 Å2 for both PSM and ESM, which is larger than that from most of the previous molecular dynamics simulations and experimental studies. Our study demonstrates that oriented lipid films are particularly well-suited to characterize ripple phases since the scattering pattern is much better resolved than in unoriented samples.
Collapse
Affiliation(s)
- Zoran Arsov
- Department of Condensed Matter Physics, Laboratory of Biophysics, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Emilio J González-Ramírez
- Instituto Biofísika (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain
| | - Felix M Goñi
- Instituto Biofísika (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain
| | | | - John F Nagle
- Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, United States.
| |
Collapse
|
14
|
Minnelli C, Cianfruglia L, Laudadio E, Galeazzi R, Pisani M, Crucianelli E, Bizzaro D, Armeni T, Mobbili G. Selective induction of apoptosis in MCF7 cancer-cell by targeted liposomes functionalised with mannose-6-phosphate. J Drug Target 2017; 26:242-251. [PMID: 28795851 DOI: 10.1080/1061186x.2017.1365873] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Liposomes are versatile platforms to carry anticancer drugs in targeted drug delivery; they can be surface modified by different strategies and, when coupled with targeting ligands, are able to increase cellular internalisation and organelle-specific drug delivery. An interesting strategy of antitumoral therapy could involve the use of lysosomotropic ligand-targeted liposomes loaded with molecules, which can induce lysosomal membrane permeabilization (LMP), leakage of cathepsins into the cytoplasm and subsequent apoptosis. We have previously demonstrated the ability of liposomes functionalised with a mannose-6-phosphate to reach lysosomes; in this research we compare the behaviour of M6P-modified and non-functionalised liposomes in MCF7 tumour cell and in HDF normal cells. With this aim, we first demonstrated by Western blotting the overexpression of mannose-6-phosphate/insulin-like growth factor (M6P/IGF-II) receptor in MCF7. Then, we prepared calcein-loaded liposomes and we revealed the increased uptake of M6P-functionalised liposomes in MCF7 cells respect to HDF cells by flow cytometry analysis. Finally, we loaded functionalised and not functionalised liposomes with N-hexanoyl-d-erythro-sphingosine (C6Cer), able to initiate LMP-induced apoptosis; after having studied the stability of both vesicles in the presence of serum by Dynamic Light Scattering and Spectrophotometric turbidity measurements, we showed that ceramide-loaded M6P-liposomes significantly increased apoptosis in MCF7 with respect to HDF cells.
Collapse
Affiliation(s)
- Cristina Minnelli
- a Department of Life and Environmental Sciences , Università Politecnica delle Marche , Ancona , Italy
| | - Laura Cianfruglia
- b Department of Clinical Sciences, Section of Biochemistry, Biology and Physics , Università Politecnica delle Marche , Ancona , Italy
| | - Emiliano Laudadio
- a Department of Life and Environmental Sciences , Università Politecnica delle Marche , Ancona , Italy
| | - Roberta Galeazzi
- a Department of Life and Environmental Sciences , Università Politecnica delle Marche , Ancona , Italy
| | - Michela Pisani
- c Department of Materials, Environmental Sciences and Urban Planning , Università Politecnica delle Marche , Ancona , Italy
| | - Emanuela Crucianelli
- a Department of Life and Environmental Sciences , Università Politecnica delle Marche , Ancona , Italy
| | - Davide Bizzaro
- a Department of Life and Environmental Sciences , Università Politecnica delle Marche , Ancona , Italy
| | - Tatiana Armeni
- b Department of Clinical Sciences, Section of Biochemistry, Biology and Physics , Università Politecnica delle Marche , Ancona , Italy
| | - Giovanna Mobbili
- a Department of Life and Environmental Sciences , Università Politecnica delle Marche , Ancona , Italy
| |
Collapse
|
15
|
Slotte JP, Yasuda T, Engberg O, Al Sazzad MA, Hautala V, Nyholm TKM, Murata M. Bilayer Interactions among Unsaturated Phospholipids, Sterols, and Ceramide. Biophys J 2017; 112:1673-1681. [PMID: 28445758 DOI: 10.1016/j.bpj.2017.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/08/2017] [Accepted: 03/21/2017] [Indexed: 11/28/2022] Open
Abstract
Using differential scanning calorimetry and lifetime analysis of trans-parinaric acid fluorescence, we have examined how cholesterol and cholesteryl phosphocholine (CholPC) affect gel-phase properties of palmitoyl ceramide (PCer) in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dioleyol-sn-glycero-3-phosphocholine (DOPC) bilayers. By 2H NMR, we also measured fluid-phase interactions among these lipids using deuterated analogs of POPC, PCer, and cholesterol. The PCer-rich gel phase in POPC bilayers (9:1 molar ratio of POPC to PCer) was partially and similarly dissolved (and thermostability decreased) by both cholesterol and CholPC (sterol was present equimolar to PCer, or in fourfold excess). In DOPC bilayers (4:1 DOPC/PCer molar ratio), CholPC was much more efficient in dissolving the PCer-rich gel phase when compared to cholesterol. This can be interpreted as indicating that PCer interaction with POPC was stronger than PCer interaction with DOPC. PCer-CholPC interactions were also more favored in DOPC bilayers compared to POPC bilayers. In the fluid POPC-rich phase, cholesterol increased the order of the acyl chain of d2-PCer much more than did CholPC. In DOPC-rich fluid bilayers, both cholesterol and CholPC increased d2-PCer acyl chain order, and the ordering induced by CholPC was more efficient in DOPC than in POPC bilayers. In fluid POPC bilayers, the ordering of 3-d1-cholesterol by PCer was weak. In summary, we found that in the gel phase, sterol effects on the PCer-rich gel phase were markedly influenced by the acyl chain composition of the fluid PC. The same was true for fluid-phase interactions involving the sterols. Our results further suggest that PCer did not display high affinity toward either of the sterols used. We conclude that the nature of unsaturated phospholipids (POPC versus DOPC) in bilayers has major effects on the properties of ceramide gel phases and on sterol-ceramide-phospholipid interactions in such complex bilayers.
Collapse
Affiliation(s)
- J Peter Slotte
- Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| | - Tomokazu Yasuda
- Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Oskar Engberg
- Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Md Abdullah Al Sazzad
- Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Victor Hautala
- Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Thomas K M Nyholm
- Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan; Japan Science and Technology Agency, ERATO, Lipid Active Structure Project, Toyonaka, Osaka, Japan
| |
Collapse
|
16
|
García-Arribas AB, González-Ramírez EJ, Sot J, Areso I, Alonso A, Goñi FM. Complex Effects of 24:1 Sphingolipids in Membranes Containing Dioleoylphosphatidylcholine and Cholesterol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5545-5554. [PMID: 28510438 DOI: 10.1021/acs.langmuir.7b00162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effects of C24:1 sphingolipids have been tested in phospholipid bilayers containing cholesterol. Confocal microscopy, differential scanning calorimetry, and atomic force microscopy imaging and force curves have been used. More precisely, the effects of C24:1 ceramide (nervonoyl ceramide, nCer) were evaluated and compared to those of C16:0 ceramide (palmitoyl ceramide, pCer) in bilayers composed basically of dioleoylphosphatidylcholine, sphingomyelin (either C24:1, nSM or C16:0, pSM) and cholesterol. Combination of equimolecular amounts of C24:1 and C16:0 sphingolipids were also studied under the same conditions. Results show that both pCer and nCer are capable of forming segregated gel domains. Force spectroscopy data point to nCer having a lower stiffening effect than pCer, while the presence of nSM reduces the stiffness. DSC reveals Tm reduction by nSM in every case. Furthermore, pSM seems to better accommodate both ceramides in a single phase of intermediate properties, while nSM partial accommodation of ceramides generates different gel phases with higher stiffnesses caused by interceramide cooperation. If both pSM and nSM are present, a clear preference of both ceramides toward pSM is observed. These findings show the sharp increase in complexity when membranes exhibit different sphingolipids of varying N-acyl chains, which should be a common issue in an actual cell membrane environment.
Collapse
Affiliation(s)
- Aritz B García-Arribas
- Instituto Biofisika (CSIC, UPV/EHU) , 48940, Bilbao, Spain
- Departamento de Bioquímica, University of the Basque Country (UPV/EHU) , 48940, Bilbao, Spain
| | - Emilio J González-Ramírez
- Instituto Biofisika (CSIC, UPV/EHU) , 48940, Bilbao, Spain
- Departamento de Bioquímica, University of the Basque Country (UPV/EHU) , 48940, Bilbao, Spain
| | - Jesús Sot
- Instituto Biofisika (CSIC, UPV/EHU) , 48940, Bilbao, Spain
- Departamento de Bioquímica, University of the Basque Country (UPV/EHU) , 48940, Bilbao, Spain
| | - Itziar Areso
- Instituto Biofisika (CSIC, UPV/EHU) , 48940, Bilbao, Spain
- Departamento de Bioquímica, University of the Basque Country (UPV/EHU) , 48940, Bilbao, Spain
| | - Alicia Alonso
- Instituto Biofisika (CSIC, UPV/EHU) , 48940, Bilbao, Spain
- Departamento de Bioquímica, University of the Basque Country (UPV/EHU) , 48940, Bilbao, Spain
| | - Félix M Goñi
- Instituto Biofisika (CSIC, UPV/EHU) , 48940, Bilbao, Spain
- Departamento de Bioquímica, University of the Basque Country (UPV/EHU) , 48940, Bilbao, Spain
| |
Collapse
|