1
|
Li D, Ji Y, Wei Z, Wang L. Toward a Comprehensive Understanding of the Anomalously Small Contact Angle of Surface Nanobubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8721-8729. [PMID: 38598618 DOI: 10.1021/acs.langmuir.4c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Experimental studies have demonstrated that the gas phase contact angle (CA) of a surface nanobubble (SNB) is much smaller than that of a macroscopic gas bubble. This reduced CA plays a crucial role in prolonging the lifetime of SNBs by lowering the bubble pressure and preventing gas molecules from dissolving in the surrounding liquids. Despite extensive efforts to explain the anomalously small CA, a consensus about the underlying reasons is yet to be reached. In this study, we conducted experimental investigations to explore the influence of gas molecules adsorbed at the solid-liquid interface on the CA of SNBs created through the solvent exchange (SE) method and temperature difference (TD). Interestingly, no significant change is observed in the CA of SNBs on highly oriented pyrolytic graphite (HOPG) surfaces. Even for nanobubbles on micro/nano pancakes, the CA only exhibited a slight reduction compared to SNBs on bare HOPG surfaces. These findings suggest that gas adsorption at the immersed solid surface may not be the primary factor contributing to the small CA of the SNBs. Furthermore, the CA of SNBs formed on polystyrene (PS) and octadecyltrichlorosilane (OTS) substrates was also investigated, and a considerable increase in CA was observed. In addition, the effects of other factors including impurity, electric double layer (EDL) line tension, and pinning force upon the CA of SNBs were discussed, and a comprehensive model about multiple factors affecting the CA of SNBs was proposed, which is helpful for understanding the abnormally small CA and the stability of SNBs.
Collapse
Affiliation(s)
- Dayong Li
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Yutong Ji
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Zhenlin Wei
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Lixin Wang
- School of Mechanical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
| |
Collapse
|
2
|
Li D, Gu J, Li Y, Zhang Z, Ji Y. Manipulating Trapped Nanobubbles Moving and Coalescing with Surface Nanobubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12991-12998. [PMID: 36228139 DOI: 10.1021/acs.langmuir.2c02593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Trapped nanobubbles are observed nucleating at nanopits on a pitted substrate, while surface nanobubbles are usually formed on the smooth solid surface in water. In this work, trapped nanobubbles and surface nanobubbles were captured by a tapping-mode atomic force microscope (AFM) on a nanopitted substrate based on the temperature difference method. A single trapped nanobubble was manipulated to change into a surface nanobubble, then to change into the trapped nanobubble again. At the same time, surface nanobubbles can be moved to merge into a trapped nanobubble. Our results show that the scan load and the size of the scan area were the main factors that significantly affect the mobility of surface/trapped nanobubbles. The coalescence and mutual transformation of the two kinds of nanobubbles indicate that trapped nanobubbles and surface nanobubbles have the same chemical nature, which also provides vital experimental proof of the existence of nanobubbles in the course of contact line depinning. Our results are of great significance for understanding nanobubble stability and providing guidelines in some industrial applications.
Collapse
Affiliation(s)
- Dayong Li
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Juan Gu
- School of Mathematics and Information Science, Yantai University, Yantai 264005, China
| | - Yong Li
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Ziqun Zhang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Yutong Ji
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
3
|
Mita M, Matsushima H, Ueda M, Ito H. In-situ high-speed atomic force microscopy observation of dynamic nanobubbles during water electrolysis. J Colloid Interface Sci 2022; 614:389-395. [DOI: 10.1016/j.jcis.2022.01.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
|
4
|
Liu Z, Cao Z, He J, Zhang H, Ge Y, Chen B. Versatile Printing of Substantial Liquid Cells for Efficiently Imaging In Situ Liquid-Phase Dynamics. NANO LETTERS 2021; 21:6882-6890. [PMID: 34387492 DOI: 10.1021/acs.nanolett.1c01901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Through its ability to image liquid-phase dynamics at nano/atomic-scale resolution, liquid-cell electron microscopy is essential for a wide range of applications, including wet-chemical synthesis, catalysis, and nanoparticle tracking, for which involved structural features are critical. However, statistical investigations by usual techniques remain challenging because of the difficulty in fabricating substantial liquid cells with appreciable efficiency. Here, we report a general approach for efficiently printing huge numbers of ready-to-use liquid cells (∼9000) within 30 s by electrospinning, with the unique feature of statistical liquid-phase studies requiring only one experimental time slot. Our solution efficiently resolves a complete transition picture of bubble evolution and also the induced nanoparticle motion. We statistically quantify the effect of the electron dose rate on the bubble variation and conclude that the bubble-driven nanoparticle motion is a ballistic-like behavior insignificant to morphological asymmetries. The versatile approach here is critical for statistical research, offering great opportunities in liquid-phase-associated dynamic studies.
Collapse
Affiliation(s)
- Zhiwen Liu
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zetan Cao
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jia He
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Haoran Zhang
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yujun Ge
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Bin Chen
- Center for Ultrafast Science and Technology, School of Physics and Astronomy, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
5
|
Li D, Jing D, Pan Y, Bhushan B, Zhao X. Study of the Relationship between Boundary Slip and Nanobubbles on a Smooth Hydrophobic Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11287-11294. [PMID: 27684436 DOI: 10.1021/acs.langmuir.6b02877] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Surface nanobubbles, which are nanoscopic or microscopic gaseous domains forming at the solid/liquid interface, have a strong impact on the interface by changing the two-phase contact to a three-phase contact. Therefore, they are believed to affect the boundary condition and liquid flow. However, there are still disputes in the theoretical studies as to whether the nanobubbles can increase the slip length effectively. Furthermore, there are still no direct experimental studies to support either side. Therefore, an intensive study on the effective slip length for flows over bare surfaces with nanobubbles is essential for establishing the relation between nanobubbles and slip length. Here, we study the effect of nanobubbles on the slippage experimentally and theoretically. Our experimental results reveal an increase from 8 to 512 nm in slip length by increasing the surface coverage of nanobubbles from 1.7 to 50.8% and by decreasing the contact angle of nanobubbles from 42.8 to 16.6°. This is in good agreement with theoretical results. Our results indicate that nanobubbles could always act as a lubricant and significantly increase the slip length. The surface coverage, height, and contact angle are key factors for nanobubbles to reduce wall friction.
Collapse
Affiliation(s)
- Dayong Li
- School of Mechanical and Electrical Engineering, Harbin Institute of Technology , Harbin 150001, China
- School of Mechanical Engineering, Heilongjiang University of Science and Technology , Harbin 150022, China
| | - Dalei Jing
- School of Mechanical and Electrical Engineering, Harbin Institute of Technology , Harbin 150001, China
- School of Mechanical Engineering, University of Shanghai for Science and Technology , Shanghai 200093, China
| | - Yunlu Pan
- School of Mechanical and Electrical Engineering, Harbin Institute of Technology , Harbin 150001, China
| | - Bharat Bhushan
- School of Mechanical and Electrical Engineering, Harbin Institute of Technology , Harbin 150001, China
- Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics (NLB2), The Ohio State University , 201 W. 19th Avenue, Columbus, Ohio 43210-1142, United States
| | - Xuezeng Zhao
- School of Mechanical and Electrical Engineering, Harbin Institute of Technology , Harbin 150001, China
| |
Collapse
|
6
|
Li D, Pan Y, Zhao X, Bhushan B. Study on Nanobubble-on-Pancake Objects Forming at Polystyrene/Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11256-11264. [PMID: 27391804 DOI: 10.1021/acs.langmuir.6b01910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Surface nanobubbles, which are the main gaseous state forming at the solid/liquid interface, have received extensive attention due to their peculiar features and potential applications. Nano/micro pancakes and interfacial gas enrichment (IGE) are observed at the water-solid interface, which suggest nanobubbles may coexist with IGE. An intuitive case for the coexistence of nanobubbles and IGE is the nanobubble-on-pancake-like objects. However, it still is not clear whether nanobubbles sit on top of an IGE or the IGE surrounds a nanobubble, which increasingly is seen to be important for understanding the stability and small contact angle of nanobubbles. In this study, the nanobubble-on-pancake-like objects were investigated on a polystyrene (PS) surface. Considering the nanobubble-like objects forming on PS film might be blisters formed because of osmosis, whether such objects are gaseous state or blisters therefore was investigated first. Then, the structure of the nanobubble-on-pancake-like object was analyzed, on the basis of which the stability of nanobubbles under tip perturbation was discussed. The pancake-like domains of the bubble-on-pancake composite disappeared, but the bubble part remained. This indicates that nanobubbles do not sit on top of the pancakes, but are pinned on the solid surface. This is in good agreement with the contact line pinning theory, and is helpful to understanding the abnormal long lifetime (stability) of nanobubbles.
Collapse
Affiliation(s)
- Dayong Li
- School of Mechanical Engineering, Heilongjiang University of Science and Technology , Harbin 150022, China
| | - Yunlu Pan
- School of Mechanical and Electrical Engineering, Harbin Institute of Technology , Harbin 150001, China
| | - Xuezeng Zhao
- School of Mechanical and Electrical Engineering, Harbin Institute of Technology , Harbin 150001, China
| | - Bharat Bhushan
- School of Mechanical and Electrical Engineering, Harbin Institute of Technology , Harbin 150001, China
- Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics (NLB2), The Ohio State University , 201 West 19th Avenue, Columbus, Ohio 43210-1142, United States
| |
Collapse
|