1
|
Chen C, Zhang L, Wang N, Sun D, Yang Z. Janus Composite Particles and Interfacial Catalysis Thereby. Macromol Rapid Commun 2023; 44:e2300280. [PMID: 37335979 DOI: 10.1002/marc.202300280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/10/2023] [Indexed: 06/21/2023]
Abstract
Janus composite particles (JPs) with distinct compartmentalization of varied components thus performances and anisotropic shape display a variety of properties and have demonstrated great potentials in diversify practical applications. Especially, the catalytic JPs are advantageous for multi-phase catalysis with much easier separation of products and recycling the catalysts. In the first section of this review, typical methods to synthesize the JPs with varied morphologies are briefly surveyed in the category of polymeric, inorganic and polymer/inorganic composite. In the main section, recent progresses of the JPs in emulsion interfacial catalysis are summarized covering organic synthesis, hydrogenation, dye degradation, and environmental chemistry. The review will end by calling more efforts toward precision synthesis of catalytic JPs at large scale to meet the stringent requirements in practical applications such as catalytic diagnosis and therapy by the functional JPs.
Collapse
Affiliation(s)
- Chen Chen
- Shenyang Key Laboratory for New Functional Coating Materials, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Linlin Zhang
- Shenyang Key Laboratory for New Functional Coating Materials, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Na Wang
- Shenyang Key Laboratory for New Functional Coating Materials, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Dayin Sun
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Dorbic K, Lattuada M. Synthesis of dimpled polymer particles and polymer particles with protrusions - Past, present, and future. Adv Colloid Interface Sci 2023; 320:102998. [PMID: 37729785 DOI: 10.1016/j.cis.2023.102998] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023]
Abstract
Since the development of emulsion polymerization techniques, polymer particles have become the epitome of standard colloids due to the exceptional control over size, size distribution, and composition the synthesis methods allow reaching. The exploration of different variations of the synthesis methods has led to the discovery of more advanced techniques, enabling control over their composition and shape. Many early investigations focused on forming particles with protrusions (with one protrusion, called dumbbell particles) and particles with concavities, also called dimpled particles. This paper reviews the literature covering the synthesis, functionalization, and applications of both types of particles. The focus has been on the rationalization of the various approaches used to prepare such particles and on the discussion of the mechanisms of formation not just from the experimental viewpoint but also from the standpoint of thermodynamics. The primary motivation to combine in a single review the preparation of both types of particles has been the observation of similarities among some of the methods developed to prepare dimpled particles, which sometimes include the formation of particles with protrusions and vice versa. The most common applications of these particles have been discussed as well. By looking at the different approaches developed in the literature under one general perspective, we hope to stimulate a more ample use of these particles and promote the development of even more effective synthetic protocols.
Collapse
Affiliation(s)
- Kata Dorbic
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Marco Lattuada
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
3
|
Gui H, Li Y, Du D, Bo Meng Q, Song XM, Liang F. Preparation of asymmetric particles by controlling the phase separation of seeded emulsion polymerization with ethanol/water mixture. J Colloid Interface Sci 2022; 618:496-506. [PMID: 35366477 DOI: 10.1016/j.jcis.2022.03.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 12/17/2022]
Abstract
Alcohols are discovered for the first time to tune the morphology of poly(vinyl benzyl chloride)-poly(3-methacryloxypropyltrimethoxysilane) (PVBC-PMPS) composite particles through seeded emulsion polymerization within the alcohol/water mixture. Here, monodispersed linear PVBC particles was synthesized through the dispersion polymerization and employed as the seeds. The as-obtained PVBC-PMPS composite particles could be dramatically tuned from core-shell structures to snowman-like particles, to dumbbell-shaped particles, to inverse snowman-like particles when the ethanol content in reaction mixtures is only adjusted within a narrow range. The morphology of fresh PMPS bulges was observed after removing the linear PVBC seeds with N,N'-dimethyl formamide, and their formation mechanism was studied by monitoring the free radical polymerization and sol-gel process of 3-methacryloxypropyltrimethoxysilane. It has been confirmed that the sol-gel kinetics were the main factor on the particles' morphology. In addition, morphologies of PVBC-PMPS particles were also varied by the MPS feeding amount, types of the co-solvent and pH values of alcohol/water mixtures.
Collapse
Affiliation(s)
- Haoguan Gui
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Yuanyuan Li
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Deming Du
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qing Bo Meng
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xi-Ming Song
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China.
| | - Fuxin Liang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Song S, Wang Y, Wang J, Mei S, Jiang Y, Li C, Pan M. Fabrication of All-Polymeric Hierarchical Colloidal Particles with Tunable Wettability by In Situ Capping Raspberry-Like Precursors. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shaofeng Song
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yajiao Wang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Juan Wang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Shuxing Mei
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yuan Jiang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Chao Li
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Mingwang Pan
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
5
|
Zhang H, Wang F, Nestler B. Janus Droplet Formation via Thermally Induced Phase Separation: A Numerical Model with Diffusion and Convection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6882-6895. [PMID: 35617199 PMCID: PMC9178917 DOI: 10.1021/acs.langmuir.2c00308] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Microscale Janus particles have versatile potential applications in many physical and biomedical fields, such as microsensor, micromotor, and drug delivery. Here, we present a phase-field approach of multicomponent and multiphase to investigate the Janus droplet formation via thermally induced phase separation. The crucial kinetics for the formation of Janus droplets consisting of two polymer species and a solvent component via an interplay of both diffusion and convection is considered in the Cahn-Hilliard-Navier-Stokes equation. The simulation results of the phase-field model show that unequal interfacial tensions between the two polymer species and the solvent result in asymmetric phase separation in the formation process of Janus droplets. This asymmetric phase separation plays a vital role in the establishment of the so-called core-shell structure that has been observed in previous experiments. By varying the droplet size, the surface tension, and the molecular interaction between the polymer species, several novel droplet morphologies are predicted in the development process of Janus droplets. Moreover, we stress that the hydrodynamics should be reckoned as a non-negligible mechanism that not only accelerates the Janus droplet evolution but also has great impacts on the coarsening and coalescence of the Janus droplets.
Collapse
Affiliation(s)
- Haodong Zhang
- Institute
of Applied Materials-Microstructure Modelling and Simulation, Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| | - Fei Wang
- Institute
of Applied Materials-Microstructure Modelling and Simulation, Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| | - Britta Nestler
- Institute
of Applied Materials-Microstructure Modelling and Simulation, Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
- Institute
of Digital Materials Science, Karlsruhe
University of Applied Sciences, Moltkestraße 30, 76133 Karlsruhe, Germany
| |
Collapse
|
6
|
Zhang W, Cheng H, Pan R, Gong Y, Gan Z, Hu R, Ding J, Zhang X, Tian X. Effective Structure Control of Colloidal Molecules and the Morphology Evolution Mechanism Investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12429-12437. [PMID: 34648714 DOI: 10.1021/acs.langmuir.1c02089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colloidal molecules (CMs), nonspherical clusters of a small number of particles, can be used as building blocks for self-assembly applications. Here, we propose a novel one pot method for CMs synthesis. First, poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAM-co-AA)) microgels were prepared by soap-free emulsion polymerization as seed particles, then monomer styrene and cross-linking agent divinylbenzene (DVB) were added, which could be polymerized by the remaining free radicals on the seed surface in situ. P(NIPAM-co-AA)-PS colloidal molecules with a series of morphologies such as popcorn-like, CO2-like, NH3-like, CH4-like and so on could be obtained. The effects of satellite colloid viscosity, interfacial tension, and polymer chain mobility on the number of satellite colloid have been investigated, and the formation mechanism of CMs is proposed based on morphology evolution investigation. Compared with the existing CM synthesis techniques, our method enables fabricating CMs from vinyl monomer in a facile and efficient way, and the scientific finding regarding the CMs formation will guide the CMs fabrication toward salable and reliable direction.
Collapse
Affiliation(s)
- Wei Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Hua Cheng
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, People's Republic of China
| | - Rui Pan
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Yi Gong
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Zhengya Gan
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Rui Hu
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Jianjun Ding
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Xian Zhang
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Xingyou Tian
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| |
Collapse
|
7
|
Duan Y, Zhao X, Sun M, Hao H. Research Advances in the Synthesis, Application, Assembly, and Calculation of Janus Materials. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04304] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Xia Zhao
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| | - Miaomiao Sun
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| | - Hong Hao
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| |
Collapse
|
8
|
Lin Q, Wang J, Yuan J, Jiang Y, Zhu L, Pan M. A novel approach toward Snowman-like polymer/SiO 2 hybrid nanoparticles via gas-driving. Chem Commun (Camb) 2020; 56:3277-3280. [PMID: 32073038 DOI: 10.1039/c9cc09731g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the first time, we report an interesting transition from conventional core-shell polymer/SiO2 particles to self-stable snowman-like particles, which can be achieved by adding a low-boiling point oil-soluble monomer because the volatile monomer not only plays a lubrication role, but also acts as a gas "motor" to drive the silica precursor polycondensate migration.
Collapse
Affiliation(s)
- Qianqian Lin
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China.
| | - Juan Wang
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China.
| | - Jinfeng Yuan
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China. and Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yuan Jiang
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China.
| | - Lei Zhu
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, USA
| | - Mingwang Pan
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China. and Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
9
|
Hamilton HSC, Bradley LC. Probing the morphology evolution of chemically anisotropic colloids prepared by homopolymerization- and copolymerization-induced phase separation. Polym Chem 2020. [DOI: 10.1039/c9py01166h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chemically anisotropic colloids prepared by polymerization-induced phase separation during seeded emulsion polymerization with non-crosslinked seeds reveals tunability in both surface and interior properties based on the morphology evolution.
Collapse
Affiliation(s)
- Heather S. C. Hamilton
- Department of Polymer Science and Engineering
- University of Massachusetts Amherst
- Amherst
- USA
| | - Laura C. Bradley
- Department of Polymer Science and Engineering
- University of Massachusetts Amherst
- Amherst
- USA
| |
Collapse
|
10
|
Su H, Hurd Price CA, Jing L, Tian Q, Liu J, Qian K. Janus particles: design, preparation, and biomedical applications. Mater Today Bio 2019; 4:100033. [PMID: 32159157 PMCID: PMC7061647 DOI: 10.1016/j.mtbio.2019.100033] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
Janus particles with an anisotropic structure have emerged as a focus of intensive research due to their diverse composition and surface chemistry, which show excellent performance in various fields, especially in biomedical applications. In this review, we briefly introduce the structures, composition, and properties of Janus particles, followed by a summary of their biomedical applications. Then we review several design strategies including morphology, particle size, composition, and surface modification, that will affect the performance of Janus particles. Subsequently, we explore the synthetic methodologies of Janus particles, with an emphasis on the most prevalent synthetic method (surface nucleation and seeded growth). Following this, we highlight Janus particles in biomedical applications, especially in drug delivery, bio-imaging, and bio-sensing. Finally, we will consider the current challenges the materials face with perspectives in the future directions.
Collapse
Affiliation(s)
- H. Su
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - C.-A. Hurd Price
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey Guildford, Surrey, GU2 7XH, United Kingdom
| | - L. Jing
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Q. Tian
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - J. Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey Guildford, Surrey, GU2 7XH, United Kingdom
| | - K. Qian
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
11
|
Wang J, Pan M, Yuan J, Wang Y, Liu G, Zhu L. Revisiting the Classical Emulsion Polymerization: An Intriguing Occurrence of Monodispersed Bowl-Shaped Particles. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Juan Wang
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Mingwang Pan
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Jinfeng Yuan
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Yajiao Wang
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Gang Liu
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Lei Zhu
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| |
Collapse
|
12
|
Zheng H, Pan M, Wen J, Yuan J, Zhu L, Yu H. Robust, Transparent, and Superhydrophobic Coating Fabricated with Waterborne Polyurethane and Inorganic Nanoparticle Composites. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00052] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hao Zheng
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People’s Republic of China
| | - Mingwang Pan
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People’s Republic of China
| | - Jie Wen
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People’s Republic of China
| | - Jinfeng Yuan
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People’s Republic of China
| | - Lei Zhu
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| | - Haifeng Yu
- Department of Material Science and Engineering, College of Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
13
|
Sun X, Huang Y, Chen M, Peng X, Dou W. Facile Synthesis of Single-Hole Crosslinked Particles with Embedded Single Bulge by Seeded Emulsion Polymerization. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xu Sun
- Department of Applied Chemistry and MOE Key Laboratory of Material Physics and Chemistry under Extrodinary Conditions; Ministry of Education; School of Natural and Applied Sciences; Northwestern Polytechnical University; Xi’an 710072 China
| | - Ying Huang
- Department of Applied Chemistry and MOE Key Laboratory of Material Physics and Chemistry under Extrodinary Conditions; Ministry of Education; School of Natural and Applied Sciences; Northwestern Polytechnical University; Xi’an 710072 China
| | - Menghua Chen
- Department of Applied Chemistry and MOE Key Laboratory of Material Physics and Chemistry under Extrodinary Conditions; Ministry of Education; School of Natural and Applied Sciences; Northwestern Polytechnical University; Xi’an 710072 China
| | - Xuanyi Peng
- Department of Applied Chemistry and MOE Key Laboratory of Material Physics and Chemistry under Extrodinary Conditions; Ministry of Education; School of Natural and Applied Sciences; Northwestern Polytechnical University; Xi’an 710072 China
| | - Wenjie Dou
- Department of Applied Chemistry and MOE Key Laboratory of Material Physics and Chemistry under Extrodinary Conditions; Ministry of Education; School of Natural and Applied Sciences; Northwestern Polytechnical University; Xi’an 710072 China
| |
Collapse
|
14
|
You W, Yu W. Onset Reduction and Stabilization of Cocontinuous Morphology in Immiscible Polymer Blends by Snowmanlike Janus Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11092-11100. [PMID: 30149721 DOI: 10.1021/acs.langmuir.8b02503] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Interfacial jamming of monolayer nanoparticles is often required to kinetically arrest the cocontinuous morphology, which is not in favor of achieving high efficiency at low particle contents. In this paper, we find that the shape asymmetry of the snowmanlike Janus particles (JPs) has significant influence on the cocontinuous morphology of polymer blends under the melt-mixing process. The addition of 0.9 vol % snowmanlike JPs can almost have the onset concentration of cocontinuity in immiscible blends, which is much lower than the apparent interfacial jamming concentration. In addition, JPs show superior ability to stabilize the continuous morphology during annealing at high temperatures. The interfacial activity of asymmetric JPs is due to the decrease in the radius of the jamming curvature in the interfacial region as the shape asymmetry of the snowmanlike JPs increases. This result implies a general strategy to prepare Janus nanoparticles for a highly effective interfacial modification agent at low contents, which can induce the dispersed-phase continuity and suppress the coarsening of cocontinuous morphology simultaneously.
Collapse
Affiliation(s)
- Wei You
- Advanced Rheology Institute, Department of Polymer Science and Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Wei Yu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| |
Collapse
|
15
|
Chen R, Ren N, Jin X, Zhu X. Role Transformation of Poly( N-isopropylacrylamide) Microgels from Stabilizer to Seed in Dispersion Polymerization by Controlling the Water Content in Methanol-Water Mixture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3420-3425. [PMID: 29125305 DOI: 10.1021/acs.langmuir.7b03381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Poly( N-isopropylacrylamide) (PNIPAM)-based ionic microgels with different diameters were first prepared and then used as particulate stabilizer or seed in dispersion polymerization of styrene. The role of PNIPAM-based ionic microgels could be transformed from particulate stabilizer to seed by controlling the water content in methanol-water mixture. Generally, PNIPAM-based ionic microgels served as particulate stabilizer in methanol in the absence of water, leading to the formation of spherical polystyrene nanoparticles. However, they turned into seeds when water was added into the methanol solution, with the formation of octopus-like nanoparticles. Further study demonstrated that the mechanism for this role transition was related to the special thermosensitivity of PNIPAM microgels in methanol-water mixture. They lost their thermosensitivity in pure methanol solution but restored their thermosensitivity when increasing the water content in methanol-water mixture.
Collapse
Affiliation(s)
- Rui Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Ning Ren
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Xin Jin
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| |
Collapse
|
16
|
Chen R, Ren N, Jin X, Zhu X. Stabilization capacity of PNIPAM microgels as particulate stabilizer in dispersion polymerization. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.11.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Pei X, Zhai K, Liang X, Deng Y, Xu K, Tan Y, Yao X, Wang P. Fabrication of shape-tunable macroparticles by seeded polymerization of styrene using non-cross-linked starch-based seed. J Colloid Interface Sci 2017; 512:600-608. [PMID: 29101901 DOI: 10.1016/j.jcis.2017.10.100] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 11/19/2022]
Abstract
Nonspherical colloidal particles with various geometries and different compositions have attracted tremendous attention and been widely researched. The preparation of polymer colloidal particles with controlled shapes by seeded polymerization is recognized as the most promising technique owing to the precise control of various morphologies and using non-cross-linked seed particles are of particular interest. Seeds particles derived from natural biopolymers are seldom applied. Hence, non-cross-linked starch-based seed could be used to fabricate the anisotropic particles by soap-free seed polymerization. Non-cross-linked starch-based seed particles were prepared by a nanoprecipitation method. Starch/polystyrene composite colloidal particles with shape-tunable were fabricated by soap-free seeded polymerization using starch-based seed. The effect of the polymerization time, monomer feed ratio and seed type were investigated. The seed particles with a single- or multi-hole structure were obtained after swelling with styrene. The resulting particles including golf-like, raspberry-like, octahedron-like and snowman-like structures, was fabricated on the polymerization process. This study firstly reports that the morphology of composite particles from golf-like to snowman-like at high monomer feed ratio using starch-based seed. At low monomer feed ratio, raspberry-like particles were obtained by surface nucleation increasing process. In addition, seed type also effect the morphology of composite particles.
Collapse
Affiliation(s)
- Xiaopeng Pei
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China.
| | - Kankan Zhai
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China.
| | - Xuechen Liang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Yukun Deng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Kun Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Ying Tan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Xianping Yao
- Hangzhou Research Institute of Chemical Technology, Hangzhou 310014, PR China.
| | - Pixin Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| |
Collapse
|
18
|
Yan W, Pan M, Yuan J, Liu G, Cui L, Zhang G, Zhu L. Raspberry-like patchy particles achieved by decorating carboxylated polystyrene cores with snowman-like poly(vinylidene fluoride)/poly(4-vinylpyridiene) Janus particles. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.06.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Wang Y, Yang Y, Yuan J, Pan M, Liu G, Ding H, Ma C. Asymmetrical Morphology and Performance of Composite Colloidal Particles Controlled via Hydrophilic Comonomer Addition Time in the Presence of Polyvinylidene Fluoride Latex. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b01057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yang Wang
- Institute of Polymer Science
and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Yongfang Yang
- Institute of Polymer Science
and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Jinfeng Yuan
- Institute of Polymer Science
and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Mingwang Pan
- Institute of Polymer Science
and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Gang Liu
- Institute of Polymer Science
and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Huili Ding
- Institute of Polymer Science
and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Cuicui Ma
- Institute of Polymer Science
and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| |
Collapse
|
20
|
Jiang K, Liu Y, Yan Y, Wang S, Liu L, Yang W. Combined chain- and step-growth dispersion polymerization toward PSt particles with soft, clickable patches. Polym Chem 2017. [DOI: 10.1039/c6py02094a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Particles with a hard body and soft, clickable dimple- or bulge-patches are prepared by simple combined chain- and step-growth dispersion polymerization.
Collapse
Affiliation(s)
- Kun Jiang
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yanan Liu
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yaping Yan
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Shengliu Wang
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Lianying Liu
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Wantai Yang
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|