1
|
Islam M, Baroi MK, Das BK, Kumari A, Das K, Ahmed S. Chemically fueled dynamic switching between assembly-encoded emissions. MATERIALS HORIZONS 2024; 11:3104-3114. [PMID: 38687299 DOI: 10.1039/d4mh00251b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Self-assembly provides access to non-covalently synthesized supramolecular materials with distinct properties from a single building block. However, dynamic switching between functional states still remains challenging, but holds enormous potential in material chemistry to design smart materials. Herein, we demonstrate a chemical fuel-mediated strategy to dynamically switch between two distinctly emissive aggregates, originating from the self-assembly of a naphthalimide-appended peptide building block. A molecularly dissolved building block shows very weak blue emission, whereas, in the assembled state (Agg-1), it shows cyan emission through π stacking-mediated excimer emission. The addition of a chemical fuel, ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC), converts the terminal aspartic acid present in the building block to an intra-molecularly cyclized anhydride in situ forming a second aggregated state, Agg-2, by changing the molecular packing, thereby transforming the emission to strong blue. Interestingly, the anhydride gets hydrolyzed gradually to reform Agg-1 and the initial cyan emission is restored. The kinetic stability of the strong blue emissive aggregate, Agg-2, can be regulated by the added concentration of the chemical fuel. Moreover, we expand the scope of this system within an agarose gel matrix, which allows us to gain spatiotemporal control over the properties, thereby producing a self-erasable writing system where the chemical fuel acts as the ink.
Collapse
Affiliation(s)
- Manirul Islam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Kolkata 700054, India.
| | - Malay Kumar Baroi
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Basab Kanti Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Aanchal Kumari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Kolkata 700054, India.
| | - Krishnendu Das
- Department of Molecules and Materials & MESA+ Institute, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands.
| | - Sahnawaz Ahmed
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Kolkata 700054, India.
| |
Collapse
|
2
|
Salter LC, Wojciechowski JP, McLean B, Charchar P, Barnes PRF, Creamer A, Doutch J, Barriga HMG, Holme MN, Yarovsky I, Stevens MM. 3,4-Ethylenedioxythiophene Hydrogels: Relating Structure and Charge Transport in Supramolecular Gels. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:3092-3106. [PMID: 38617802 PMCID: PMC11007859 DOI: 10.1021/acs.chemmater.3c01360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/16/2024]
Abstract
Ionic charge transport is a ubiquitous language of communication in biological systems. As such, bioengineering is in constant need of innovative, soft, and biocompatible materials that facilitate ionic conduction. Low molecular weight gelators (LMWGs) are complex self-assembled materials that have received increasing attention in recent years. Beyond their biocompatible, self-healing, and stimuli responsive facets, LMWGs can be viewed as a "solid" electrolyte solution. In this work, we investigate 3,4-ethylenedioxythiophene (EDOT) as a capping group for a small peptide library, which we use as a system to understand the relationship between modes of assembly and charge transport in supramolecular gels. Through a combination of techniques including small-angle neutron scattering (SANS), NMR-based Van't Hoff analysis, atomic force microscopy (AFM), rheology, four-point probe, and electrochemical impedance spectroscopy (EIS), we found that modifications to the peptide sequence result in distinct assembly pathways, thermodynamic parameters, mechanical properties, and ionic conductivities. Four-point probe conductivity measurements and electrochemical impedance spectroscopy suggest that ionic conductivity is approximately doubled by programmable gel assemblies with hollow cylinder morphologies relative to gels containing solid fibers or a control electrolyte. More broadly, it is hoped this work will serve as a platform for those working on charge transport of aqueous soft materials in general.
Collapse
Affiliation(s)
- Luke C.
B. Salter
- Department
of Materials and Department of Bioengineering, Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jonathan P. Wojciechowski
- Department
of Materials and Department of Bioengineering, Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ben McLean
- School
of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
- ARC
Research Hub for Australian Steel Innovation, https://www.rmit.edu.au/research/centres-collaborations/multi-partner-collaborations/arc-research-hub-aus-steel-manufacturing
| | - Patrick Charchar
- School
of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Piers R. F. Barnes
- Department
of Physics, Imperial College London, London SW7 2AZ, United
Kingdom
| | - Adam Creamer
- Department
of Materials and Department of Bioengineering, Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - James Doutch
- ISIS
Muon and Neutron Source, Rutherford Appleton
Laboratory, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
| | - Hanna M. G. Barriga
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Margaret N. Holme
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Irene Yarovsky
- School
of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Molly M. Stevens
- Department
of Materials and Department of Bioengineering, Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
- Department
of Physiology, Anatomy and Genetics, Department of Engineering Science,
and Kavli Institute for Nanoscience Discovery, University of Oxford, OX1
3QU, Oxford, United Kingdom
| |
Collapse
|
3
|
Hu Y, Fan Y, Chen B, Li H, Zhang G, Su J. Stimulus-responsive peptide hydrogels: a safe and least invasive administration approach for tumor treatment. J Drug Target 2023:1-17. [PMID: 37469142 DOI: 10.1080/1061186x.2023.2236332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
Tumours, with increasing mortality around the world, have bothered human beings for decades. Enhancing the targeting of antitumor drugs to tumour tissues is the key to enhancing their antitumor effects. The tumour microenvironment is characterised by a relatively low pH, overexpression of certain enzymes, redox imbalance, etc. Therefore, smart drug delivery systems that respond to the tumour microenvironment have been proposed to selectively release antitumor drugs. Among them, peptide hydrogels as a local drug delivery system have received much attention due to advantages such as high biocompatibility, degradability and high water-absorbing capacity. The combination of peptide segments with different physiological functions allows for tumour targeting, self-aggregation, responsiveness, etc. Morphological and microstructural changes in peptide hydrogels can occur when utilising the inherent pathological microenvironment of tumours to trigger drug release, which endows such systems with limited adverse effects and improved therapeutic efficiency. Herein, this review outlined the driving forces, impact factors, and sequence design in peptide hydrogels. We also discussed the triggers to induce the transformation of peptide-based hydrogels in the tumour microenvironment and described the advancements of peptide-based hydrogels for local drug delivery in tumour treatment. Finally, we gave a brief perspective on the prospects and challenges in this field.
Collapse
Affiliation(s)
- Yuchen Hu
- National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| | - Ying Fan
- Chongqing University Jiangjin Hospital, Chongqing, P.R. China
| | - Ban Chen
- National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| | - Hong Li
- School of Pharmacy, Guangxi Medical University, Nanning, P.R. China
| | - Gang Zhang
- Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan, P.R. China
| | - Jiangtao Su
- National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| |
Collapse
|
4
|
Yang S, Wang M, Wang T, Sun M, Huang H, Shi X, Duan S, Wu Y, Zhu J, Liu F. Self-assembled short peptides: Recent advances and strategies for potential pharmaceutical applications. Mater Today Bio 2023; 20:100644. [PMID: 37214549 PMCID: PMC10199221 DOI: 10.1016/j.mtbio.2023.100644] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/10/2023] [Accepted: 04/23/2023] [Indexed: 05/24/2023] Open
Abstract
Self-assembled short peptides have intrigued scientists due to the convenience of synthesis, good biocompatibility, low toxicity, inherent biodegradability and fast response to change in the physiological environment. Therefore, it is necessary to present a comprehensive summary of the recent advances in the last decade regarding the construction, route of administration and application of self-assembled short peptides based on the knowledge on their unique and specific ability of self-assembly. Herein, we firstly explored the molecular mechanisms of self-assembly of short peptides, such as non-modified amino acids, as well as Fmoc-modified, N-functionalized, and C-functionalized peptides. Next, cell penetration, fusion, and peptide targeting in peptide-based drug delivery were characterized. Then, the common administration routes and the potential pharmaceutical applications (drug delivery, antibacterial activity, stabilizers, imaging agents, and applications in bioengineering) of peptide drugs were respectively summarized. Last but not least, some general conclusions and future perspectives in the relevant fields were briefly listed. Although with certain challenges, great opportunities are offered by self-assembled short peptides to the fascinating area of drug development.
Collapse
Affiliation(s)
- Shihua Yang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| | - Mingge Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Tianye Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Anus and Intestine Surgery, The First Hospital of Dalian Medical University, Dalian, 116000, China
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hanwei Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Shijie Duan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| | - Ying Wu
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| | - Jiaming Zhu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| |
Collapse
|
5
|
Binaymotlagh R, Chronopoulou L, Haghighi FH, Fratoddi I, Palocci C. Peptide-Based Hydrogels: New Materials for Biosensing and Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5871. [PMID: 36079250 PMCID: PMC9456777 DOI: 10.3390/ma15175871] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/06/2022] [Accepted: 08/22/2022] [Indexed: 05/09/2023]
Abstract
Peptide-based hydrogels have attracted increasing attention for biological applications and diagnostic research due to their impressive features including biocompatibility and biodegradability, injectability, mechanical stability, high water absorption capacity, and tissue-like elasticity. The aim of this review will be to present an updated report on the advancement of peptide-based hydrogels research activity in recent years in the field of anticancer drug delivery, antimicrobial and wound healing materials, 3D bioprinting and tissue engineering, and vaccines. Additionally, the biosensing applications of this key group of hydrogels will be discussed mainly focusing the attention on cancer detection.
Collapse
Affiliation(s)
- Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
6
|
Synthesis, Self-Assembly, and Cell Responses of Aromatic IKVAV Peptide Amphiphiles. Molecules 2022; 27:molecules27134115. [PMID: 35807362 PMCID: PMC9267992 DOI: 10.3390/molecules27134115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Synthetic bioactive aromatic peptide amphiphiles have been recognized as key elements of emerging biomedical strategies due to their biocompatibility, design flexibility, and functionality. Inspired by natural proteins, we synthesized two supramolecular materials of phenyl-capped Ile-Lys-Val-Ala-Val (Ben-IKVAV) and perfluorophenyl-capped Ile-Lys-Val-Ala-Val (PFB-IKVAV). We employed UV-vis absorption, fluorescence, circular dichroism, and Fourier-transform infrared spectroscopy to examine the driving force in the self-assembly of the newly discovered materials. It was found that both compounds exhibited ordered π-π interactions and secondary structures, especially PFB-IKVAV. The cytotoxicity of human mesenchymal stem cells (hMSCs) and cell differentiation studies was also performed. In addition, the immunofluorescent staining for neuronal-specific markers of MAP2 was 4.6 times (neural induction medium in the presence of PFB-IKVAV) that of the neural induction medium (control) on day 7. From analyzing the expression of neuronal-specific markers in hMSCs, it can be concluded that PFB-IKVAV may be a potential supramolecular biomaterial for biomedical applications.
Collapse
|
7
|
Wei H, Lin S, Liu W, Li Y, Li B, Yang Y. Stereostructure Dependence Phenomenon on the Self-Assembly of Ala-Ala-Ala Lipotripeptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2248-2256. [PMID: 35133849 DOI: 10.1021/acs.langmuir.1c02813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A series of lipotripeptide stereoisomers based on alanine were synthesized, and their self-assembling behaviors were studied by means of circular dichroism spectra, ATR-IR, temperature-dependent 1H NMR, and X-ray diffraction patterns. In the mixed solvent of hexafluoroisopropanol/H2O (1/9, v/v), eight lipotripeptides were able to self-assembled into nanoflakes or nanoribbons driven by the hydrophobic association of alkyl chains, intermolecular hydrogen bonding among carboxyl groups at C-terminal and amide groups of alanine moieties in the peptide segment. It was found that the stacking chirality of carbonyl groups was determined by the chirality of alanine residue at C-terminal (i.e., "C-terminal determination" rule). Moreover, our research also highlighted the intermolecular hydrogen bonding on amide groups of each alanine residue, terminal carboxyl as well as the molecular packing structures can be subtly manipulated by changing the stereochemical sequence of peptide segment.
Collapse
Affiliation(s)
- He Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Shuwei Lin
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, School of Optoelectronics Science and Engineering, Soochow University, Suzhou 215123, China
| | - Wei Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Baozong Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yonggang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Zhou Y, Qiu P, Yao D, Song Y, Zhu Y, Pan H, Wu J, Zhang J. A crosslinked colloidal network of peptide/nucleic base amphiphiles for targeted cancer cell encapsulation. Chem Sci 2021; 12:10063-10069. [PMID: 34349970 PMCID: PMC8317620 DOI: 10.1039/d1sc02995a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 01/14/2023] Open
Abstract
The use of peptide amphiphiles (PAs) is becoming increasingly popular, not only because of their unique self-assembly properties but also due to the versatility of designs, allowing biological responsiveness, biocompatibility, and easy synthesis, which could potentially contribute to new drug design and disease treatment concepts. Oligonucleotides, another major functional bio-macromolecule class, have been introduced recently as new functional building blocks into PAs, further enriching the tools available for the fabrication of bio-functional PAs. Taking advantage of this, in the present work, two nucleic base-linked (adenine, A and thymine, T) RGD-rich peptide amphiphiles (NPAs) containing the fluorophores naphthalimide and rhodamine (Nph-A and Rh-T) were designed and synthesized. The two NPAs exhibit distinctive assembly behaviours with spherical (Rh-T) and fibrous (Nph-A) morphologies, and mixing Nph-A with Rh-T leads to a densely crosslinked colloidal network (Nph-A/Rh-T) via mutually promoted supramolecular polymerization via nucleation-growth assembly. Because of the RGD-rich sequences in the crosslinked network, further research on in situ targeted cancer cell (MDA-MB-231) encapsulation via RGD-integrin recognition was performed, and the modulation of cell behaviours (e.g., cell viability and migration) was demonstrated using both confocal laser scanning microscopy (CLSM) imaging and a scratch wound healing assay.
Collapse
Affiliation(s)
- Yanzi Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Peng Qiu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Defan Yao
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine 1665 Kongjiang Road Shanghai 200092 China
| | - Yanyan Song
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Yuedong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Haiting Pan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Junchen Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
9
|
Sheshashena Reddy T, Moon H, Choi MS. Turn-on fluorescent naphthalimide-benzothiazole probe for cyanide detection and its two-mode aggregation-induced emission behavior. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119535. [PMID: 33582439 DOI: 10.1016/j.saa.2021.119535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Naphthalimide-benzothiazole conjugate (NBTZ) linked by cinnamonitrile was designed, synthesized, and fully characterized by NMR (1H, 13C, DEPT, HSQC) and high-resolution mass spectrometry. NBTZ exhibited unique turn-on fluorescence in the presence of CN- with relatively high selectivity compared to other anions such as SCN-, HSO4-, ClO4-, NO3-, Cl-, Br-, I-, and PO4-3 in tetrahydrofuran (THF). The detection limit for CN- was found to be 3.35 × 10-8 M in THF. The sensing mechanism was analyzed through 1H, 13C, DEPT, and mass spectroscopy. NBTZ also showed two-mode aggregation-induced emission (AIE) in THF-H2O mixtures. In a 30:70 THF-H2O (v/v) mixture, the maximum AIE was observed at 430 nm (blue) because of the rotation of the CC bond between the naphthalimide ring and the phenyl ring was restricted. In 10:90 THF-H2O (v/v), a new red-shifted AIE appeared at 490 nm (cyan), due to the extended π-conjugation induced by restriction of rotation of the CC bond between the benzothiazole and naphthalimide rings.
Collapse
Affiliation(s)
- T Sheshashena Reddy
- Division of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, South Korea
| | - Hyungkyu Moon
- Division of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, South Korea
| | - Myung-Seok Choi
- Division of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, South Korea.
| |
Collapse
|
10
|
Das AK, Gavel PK. Low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, wound healing, anticancer, drug delivery, bioimaging and 3D bioprinting applications. SOFT MATTER 2020; 16:10065-10095. [PMID: 33073836 DOI: 10.1039/d0sm01136c] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this review, we have focused on the design and development of low molecular weight self-assembling peptide-based materials for various applications including cell proliferation, tissue engineering, antibacterial, antifungal, anti-inflammatory, anticancer, wound healing, drug delivery, bioimaging and 3D bioprinting. The first part of the review describes about stimuli and various noncovalent interactions, which are the key components of various self-assembly processes for the construction of organized structures. Subsequently, the chemical functionalization of the peptides has been discussed, which is required for the designing of self-assembling peptide-based soft materials. Various low molecular weight self-assembling peptides have been discussed to explain the important structural features for the construction of defined functional nanostructures. Finally, we have discussed various examples of low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, anticancer, wound healing, drug delivery, bioimaging and 3D bioprinting applications.
Collapse
Affiliation(s)
- Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | | |
Collapse
|
11
|
Sequence-Dependent Nanofiber Structures of Phenylalanine and Isoleucine Tripeptides. Int J Mol Sci 2020; 21:ijms21228431. [PMID: 33182629 PMCID: PMC7696242 DOI: 10.3390/ijms21228431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 01/27/2023] Open
Abstract
The molecular design of short peptides to achieve a tailor-made functional architecture has attracted attention during the past decade but remains challenging as a result of insufficient understanding of the relationship between peptide sequence and assembled supramolecular structures. We report a hybrid-resolution model to computationally explore the sequence–structure relationship of self-assembly for tripeptides containing only phenylalanine and isoleucine. We found that all these tripeptides have a tendency to assemble into nanofibers composed of laterally associated filaments. Molecular arrangements within the assemblies are diverse and vary depending on the sequences. This structural diversity originates from (1) distinct conformations of peptide building blocks that lead to different surface geometries of the filaments and (2) unique sidechain arrangements at the filament interfaces for each sequence. Many conformations are available for tripeptides in solution, but only an extended β-strand and another resembling a right-handed turn are observed in assemblies. It was found that the sequence dependence of these conformations and the packing of resulting filaments are determined by multiple competing noncovalent forces, with hydrophobic interactions involving Phe being particularly important. The sequence pattern for each type of assembly conformation and packing has been identified. These results highlight the importance of the interplay between conformation, molecular packing, and sequences for determining detailed nanostructures of peptides and provide a detailed insight to support a more precise design of peptide-based nanomaterials.
Collapse
|
12
|
Chakravarthy RD, Mohammed M, Lin HC. Enzyme Instructed Self-assembly of Naphthalimide-dipeptide: Spontaneous Transformation from Nanosphere to Nanotubular Structures that Induces Hydrogelation. Chem Asian J 2020; 15:2696-2705. [PMID: 32652888 DOI: 10.1002/asia.202000575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/06/2020] [Indexed: 11/08/2022]
Abstract
Understanding the structure-morphology relationships of self-assembled nanostructures is crucial for developing materials with the desired chemical and biological functions. Here, phosphate-based naphthalimide (NI) derivatives have been developed for the first time to study the enzyme-instructed self-assembly process. Self-assembly of simple amino acid derivative NI-Yp resulted in non-specific amorphous aggregates in the presence of alkaline phosphatase enzyme. On the other hand, NI-FYp dipeptide forms spherical nanoparticles under aqueous conditions which slowly transformed into partially unzipped nanotubular structures during the enzymatic catalytic process through multiple stages which subsequently resulted in hydrogelation. The self-assembly is driven by the formation of β-sheet type structures stabilized by offset aromatic stacking of NI core and hydrogen bonding interactions which is confirmed with PXRD, Congo-red staining and molecular mechanical calculations. We propose a mechanism for the self-assembly process based on TEM and spectroscopic data. The nanotubular structures of NI-FYp precursor exhibited higher cytotoxicity to human breast cancer cells and human cervical cancer cells when compared to the nanofiber structures of the similar Fmoc-derivative. Overall this study provides a new understanding of the supramolecular self-assembly of small-molecular-weight hydrogelators.
Collapse
Affiliation(s)
- Rajan Deepan Chakravarthy
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan, 300, Republic of China
| | - Mohiuddin Mohammed
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan, 300, Republic of China
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan, 300, Republic of China
| |
Collapse
|
13
|
Gupta S, Singh I, Sharma AK, Kumar P. Ultrashort Peptide Self-Assembly: Front-Runners to Transport Drug and Gene Cargos. Front Bioeng Biotechnol 2020; 8:504. [PMID: 32548101 PMCID: PMC7273840 DOI: 10.3389/fbioe.2020.00504] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
The translational therapies to promote interaction between cell and signal come with stringent eligibility criteria. The chemically defined, hierarchically organized, and simpler yet blessed with robust intermolecular association, the peptides, are privileged to make the cut-off for sensing the cell-signal for biologics delivery and tissue engineering. The signature service and insoluble network formation of the peptide self-assemblies as hydrogels have drawn a spell of research activity among the scientists all around the globe in the past decades. The therapeutic peptide market players are anticipating promising growth opportunities due to the ample technological advancements in this field. The presence of the other organic moieties, enzyme substrates and well-established protecting groups like Fmoc and Boc etc., bring the best of both worlds. Since the large sequences of peptides severely limit the purification and their isolation, this article reviews the account of last 5 years' efforts on novel approaches for formulation and development of single molecule amino acids, ultra-short peptide self-assemblies (di- and tri- peptides only) and their derivatives as drug/gene carriers and tissue-engineering systems.
Collapse
Affiliation(s)
- Seema Gupta
- Chemistry Department, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Indu Singh
- Chemistry Department, Acharya Narendra Dev College, University of Delhi, New Delhi, India
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Ashwani K. Sharma
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
14
|
Muzey B, Naseem A. An AIEE active 1, 8-naphthalimide- sulfamethizole probe for ratiometric fluorescent detection of Hg2+ ions in aqueous media. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112354] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Yu W, Xue B, Zhu Z, Shen Z, Qin M, Wang W, Cao Y. Strong and Injectable Hydrogels Based on Multivalent Metal Ion-Peptide Cross-linking. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-9100-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Mondal S, Das S, Nandi AK. A review on recent advances in polymer and peptide hydrogels. SOFT MATTER 2020; 16:1404-1454. [PMID: 31984400 DOI: 10.1039/c9sm02127b] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this review, we focus on the very recent developments on the use of the stimuli responsive properties of polymer hydrogels for targeted drug delivery, tissue engineering, and biosensing utilizing their different optoelectronic properties. Besides, the stimuli-responsive hydrogels, the conducting polymer hydrogels are discussed, with specific attention to the energy generation and storage behavior of the xerogel derived from the hydrogel. The electronic and ionic conducting gels have been discussed that have applications in various electronic devices, e.g., organic field effect transistors, soft robotics, ionic skins, and sensors. The properties of polymer hybrid gels containing carbon nanomaterials have been exemplified here giving attention to applications in supercapacitors, dye sensitized solar cells, photocurrent switching, etc. Recent trends in the properties and applications of some natural polymer gels to produce thermal and acoustic insulating materials, drug delivery vehicles, self-healing material, tissue engineering, etc., are discussed. Besides the polymer gels, peptide gels of different dipeptides, tripeptides, oligopeptides, polypeptides, cyclic peptides, etc., are discussed, giving attention mainly to biosensing, bioimaging, and drug delivery applications. The properties of peptide-based hybrid hydrogels with polymers, nanoparticles, nucleotides, fullerene, etc., are discussed, giving specific attention to drug delivery, cell culture, bio-sensing, and bioimaging properties. Thus, the present review delineates, in short, the preparation, properties, and applications of different polymer and peptide hydrogels prepared in the past few years.
Collapse
Affiliation(s)
- Sanjoy Mondal
- Polymer Science Unit, School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | | | | |
Collapse
|
17
|
Martin AD, Thordarson P. Beyond Fmoc: a review of aromatic peptide capping groups. J Mater Chem B 2020; 8:863-877. [PMID: 31950969 DOI: 10.1039/c9tb02539a] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Self-assembling short peptides have attracted widespread interest due to their tuneable, biocompatible nature and have potential applications in energy materials, tissue engineering, sensing and drug delivery. The hierarchical self-assembly of these peptides is highly dependent on the selection of not only amino acid sequence, but also the capping group which is often employed at the N-terminus of the peptide to drive self-assembly. Although the Fmoc (9H-fluorenylmethyloxycarbonyl) group is commonly used due to its utility in solid phase peptide synthesis, many other aromatic capping groups have been reported which yield functional, responsive materials. This review explores recent developments in the utilisation of functional, aromatic capping groups beyond the Fmoc group for the creation of redox-responsive, fluorescent and drug delivering hydrogel scaffolds.
Collapse
Affiliation(s)
- Adam D Martin
- Dementia Research Centre, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Pall Thordarson
- School of Chemistry, The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
18
|
Talloj SK, Mohammed M, Lin HC. Construction of self-assembled nanostructure-based tetraphenylethylene dipeptides: supramolecular nanobelts as biomimetic hydrogels for cell adhesion and proliferation. J Mater Chem B 2020; 8:7483-7493. [DOI: 10.1039/d0tb01147a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A novel TPE-YY peptide hydrogelator self-assembled to form twisted nanobelts at neutral pH, upon cultured with 3A6 cells showed selective cell adhesion and growth.
Collapse
Affiliation(s)
- Satish Kumar Talloj
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Mohiuddin Mohammed
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| |
Collapse
|
19
|
Calatrava-Pérez E, Acherman S, Stricker L, McManus G, Delente J, Lynes AD, Henwood AF, Lovitt JI, Hawes CS, Byrne K, Schmitt W, Kotova O, Gunnlaugsson T, Scanlan EM. Fluorescent supramolecular hierarchical self-assemblies from glycosylated 4-amino- and 4-bromo-1,8-naphthalimides. Org Biomol Chem 2020; 18:3475-3480. [DOI: 10.1039/d0ob00033g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The investigation into the self-assembly formation of the glycan based 4-amino- and 4-bromo-1,8-naphthalimide (Nap) structures1–3is presented.
Collapse
|
20
|
Saddik AA, Mohammed M, Lin HC. The crown ether size and stereochemistry affect the self-assembly, hydrogelation, and cellular interactions of crown ether/peptide conjugates. J Mater Chem B 2020; 8:9961-9970. [DOI: 10.1039/d0tb01913e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Crown ether ring size affects nanofiber morphology of hydrogels upon conjugation with D- and L-phenylalanine dipeptides. Random nanofibers showed enhanced cell adhesion and proliferation whereas twisted nanofibers displayed weak cell attachments.
Collapse
Affiliation(s)
| | - Mohiuddin Mohammed
- Department of Materials Science and Engineering
- National Chiao Tung University
- Republic of China
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering
- National Chiao Tung University
- Republic of China
| |
Collapse
|
21
|
Balachandra C, Govindaraju T. Cyclic Dipeptide-Guided Aggregation-Induced Emission of Naphthalimide and Its Application for the Detection of Phenolic Drugs. J Org Chem 2019; 85:1525-1536. [DOI: 10.1021/acs.joc.9b02580] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chenikkayala Balachandra
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka 560064, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka 560064, India
| |
Collapse
|
22
|
Zeng L, Song M, Gu J, Xu Z, Xue B, Li Y, Cao Y. A Highly Stretchable, Tough, Fast Self-Healing Hydrogel Based on Peptide⁻Metal Ion Coordination. Biomimetics (Basel) 2019; 4:E36. [PMID: 31105221 PMCID: PMC6632049 DOI: 10.3390/biomimetics4020036] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/31/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
Abstract
Metal coordination bonds are widely used as the dynamic cross-linkers to construct self-healing hydrogels. However, it remains challenging to independently improve the toughness of metal coordinated hydrogels without affecting the stretchability and self-healing properties, as all these features are directly correlated with the dynamic properties of the same metal coordination bonds. In this work, using histidine-Zn2+ binding as an example, we show that the coordination number (the number of binding sites in each cross-linking ligand) is an important parameter for the mechanical strength of the hydrogels. By increasing the coordination number of the binding site, the mechanical strength of the hydrogels can be greatly improved without sacrificing the stretchability and self-healing properties. By adjusting the peptide and Zn2+ concentrations, the hydrogels can achieve a set of demanding mechanical features, including the Young's modulus of 7-123 kPa, fracture strain of 434-781%, toughness of 630-1350 kJ m-3, and self-healing time of ~1 h. We anticipate the engineered hydrogels can find broad applications in a variety of biomedical fields. Moreover, the concept of improving the mechanical strength of metal coordinated hydrogels by tuning the coordination number may inspire the design of other dynamically cross-linked hydrogels with further improved mechanical performance.
Collapse
Affiliation(s)
- Liang Zeng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Mingming Song
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China.
| | - Jie Gu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China.
| | - Zhengyu Xu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China.
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China.
| | - Ying Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
23
|
Felip-León C, Galindo F, Miravet JF. Insights into the aggregation-induced emission of 1,8-naphthalimide-based supramolecular hydrogels. NANOSCALE 2018; 10:17060-17069. [PMID: 30178813 DOI: 10.1039/c8nr03755h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The study of aggregation-induced emission (AIE) of a series of 1,8-naphthalimide derivatives in aqueous media is reported herein. Some of these molecules constitute the first examples of 1,8-naphthalimide-containing amino acid derivatives that form hydrogels with excellent photophysical and mechanical properties. The present study provides further insights for the rational design of water-compatible stimuli-responsive photonic materials presenting AIE. AIE was quantitatively evaluated by measuring the fluorescence quantum yields of the molecules. Gelators 1 and 2 exhibit self-assembled fibrillar morphologies and present the best performance regarding the AIE effect, showing a remarkable enhancement in fluorescence intensity of 4700% and reaching a notable fluorescence quantum yield (Φf) of 30%. Non-gelator molecules 6 and 7 form nanoparticles, which also present AIE, but with emissions corresponding to their excimers. Therefore, the AIE intensity and wavelength are regulated by the type of aggregate morphology: fibers, nanoparticles or soluble species.
Collapse
Affiliation(s)
- Carles Felip-León
- Universitat Jaume I, Departamento de Química Inorgánica y Orgánica, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| | | | | |
Collapse
|
24
|
Restu WK, Nishida Y, Yamamoto S, Ishii J, Maruyama T. Short Oligopeptides for Biocompatible and Biodegradable Supramolecular Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8065-8074. [PMID: 29897242 DOI: 10.1021/acs.langmuir.8b00362] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Short Phe-rich oligopeptides, consisting of only four and five amino acids, worked as effective supramolecular hydrogelators for buffer solutions at low gelator concentrations (0.5-1.5 wt %). Among 10 different oligopeptides synthesized, peptide P1 (Ac-Phe-Phe-Phe-Gly-Lys) showed high gelation ability. Transmission electron microscopy observations suggested that the peptide molecules self-assembled into nanofibrous networks, which turned into gels. The hydrogel of peptide P1 showed reversible thermal gel-sol transition and viscoelastic properties typical of a gel. Circular dichroism spectra revealed that peptide P1 formed a β-sheetlike structure, which decreased with increasing temperature. The self-assembly of peptide P1 occurred even in the presence of nutrients in culture media and common surfactants. Escherichia coli and yeast successfully grew on the hydrogel. The hydrogel exhibited low cytotoxicity to animal cells. Finally, we demonstrated that functional compounds can be released from the hydrogel in different manners based on the interaction between the compounds and the hydrogel.
Collapse
Affiliation(s)
- Witta Kartika Restu
- Department of Chemical Science and Engineering, Graduate School of Engineering , Kobe University , 1-1 Rokkodaicho , Nada-ku, Kobe 657-8501 , Japan
- Research Center for Chemistry , Indonesian Institute of Sciences, Kawasan Puspiptek Serpong , Tangerang Selatan , Banten 15314 , Indonesia
| | - Yuki Nishida
- Department of Chemical Science and Engineering, Graduate School of Engineering , Kobe University , 1-1 Rokkodaicho , Nada-ku, Kobe 657-8501 , Japan
| | - Shota Yamamoto
- Department of Chemical Science and Engineering, Graduate School of Engineering , Kobe University , 1-1 Rokkodaicho , Nada-ku, Kobe 657-8501 , Japan
| | - Jun Ishii
- Graduate School of Science, Technology and Innovation , Kobe University , 1-1 Rokkodaicho , Nada-ku, Kobe 657-8501 , Japan
| | - Tatsuo Maruyama
- Department of Chemical Science and Engineering, Graduate School of Engineering , Kobe University , 1-1 Rokkodaicho , Nada-ku, Kobe 657-8501 , Japan
| |
Collapse
|
25
|
Lampel A, Ulijn RV, Tuttle T. Guiding principles for peptide nanotechnology through directed discovery. Chem Soc Rev 2018; 47:3737-3758. [PMID: 29748676 DOI: 10.1039/c8cs00177d] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Life's diverse molecular functions are largely based on only a small number of highly conserved building blocks - the twenty canonical amino acids. These building blocks are chemically simple, but when they are organized in three-dimensional structures of tremendous complexity, new properties emerge. This review explores recent efforts in the directed discovery of functional nanoscale systems and materials based on these same amino acids, but that are not guided by copying or editing biological systems. The review summarises insights obtained using three complementary approaches of searching the sequence space to explore sequence-structure relationships for assembly, reactivity and complexation, namely: (i) strategic editing of short peptide sequences; (ii) computational approaches to predicting and comparing assembly behaviours; (iii) dynamic peptide libraries that explore the free energy landscape. These approaches give rise to guiding principles on controlling order/disorder, complexation and reactivity by peptide sequence design.
Collapse
Affiliation(s)
- A Lampel
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), New York, NY, USA.
| | | | | |
Collapse
|
26
|
Talloj SK, Cheng B, Weng JP, Lin HC. Glucosamine-Based Supramolecular Nanotubes for Human Mesenchymal Cell Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15079-15087. [PMID: 29651840 DOI: 10.1021/acsami.8b03226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Herein, we demonstrate an example of glucosamine-based supramolecular hydrogels that can be used for human mesenchymal cell therapy. We designed and synthesized a series of amino acid derivatives based on a strategy of capping d-glucosamine moiety at the C-terminus and fluorinated benzyl group at the N-terminus. From a systematic study on chemical structures, we discovered that the glucosamine-based supramolecular hydrogel [pentafluorobenzyl (PFB)-F-Glu] self-assembled with one-dimensional nanotubular structures at physiological pH. The self-assembly of a newly discovered PFB-F-Glu motif is attributed to the synergistic effect of π-π stacking and extensive intermolecular hydrogen bonding network in aqueous medium. Notably, PFB-F-Glu nanotubes are proven to be nontoxic to human mesenchymal stem cells (hMSCs) and have been shown to enhance hMSC proliferation while maintaining their pluripotency. Retaining of pluripotency capabilities provides potentially unlimited source of undifferentiated cells for the treatment of future cell therapies. Furthermore, hMSCs cultured on PFB-F-Glu are able to secrete paracrine factors that downregulate profibrotic gene expression in lipopolysaccharide-treated human skin fibroblasts, which demonstrates that PFB-F-Glu nanotubes have the potential to be used for wound healing applications. Overall, this article addresses the importance of chemical design to generate supramolecular biomaterials for stem cell therapy.
Collapse
Affiliation(s)
- Satish Kumar Talloj
- Department of Materials Science and Engineering , National Chiao Tung University , Hsinchu 30010 , Taiwan , Republic of China
| | - Bill Cheng
- Department of Materials Science and Engineering , National Chiao Tung University , Hsinchu 30010 , Taiwan , Republic of China
| | - Jen-Po Weng
- Department of Materials Science and Engineering , National Chiao Tung University , Hsinchu 30010 , Taiwan , Republic of China
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering , National Chiao Tung University , Hsinchu 30010 , Taiwan , Republic of China
| |
Collapse
|
27
|
Gopikrishna P, Meher N, Iyer PK. Functional 1,8-Naphthalimide AIE/AIEEgens: Recent Advances and Prospects. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12081-12111. [PMID: 29171747 DOI: 10.1021/acsami.7b14473] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This comprehensive review surveys the up-to-date development of aggregation-induced emission/aggregation-induced emission enhancement (AIE/AIEE) active naphthalimide (NI)-based smart materials with potential for wide and real-world applications and that serves as a highly versatile building block with tunable absorption and emission in the complete visible region. The review article commences with a precise description of the importance of NI moiety and its several restricted area of applications owing to its aggregation caused quenching (ACQ) properties, followed by the discovery and importance of AIE/AIEE-active NIs. The introduction section tracked an overview of the state of the art in NI luminogens in multiple applications. It also includes a few mechanistic studies on the structure-property correlation of NIs and provides more insights into the condensed-state photophysical properties of small aggregation-prone systems. The review aims to ultimately accomplish current and forthcoming views comprising the use of the NIs for the detection of biologically active molecules, such as amino acids and proteins, recognition of toxic analytes, fabrication of light emitting diodes, and their potential in therapeutics and diagnostics.
Collapse
|
28
|
Han X, Liu J, Zhao C, Zhang B, Xu X, Song J. Two-component gelator isomers with different combination of amine and acid: Helical/non-helical morphology and selective adsorption of dyes. J Colloid Interface Sci 2018; 525:177-186. [PMID: 29702323 DOI: 10.1016/j.jcis.2018.04.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
Abstract
Hydrogels induced by two-component gelator isomers based on the different amine/acid interactions were investigated. Scanning electron microscopy and atomic force microscopy images of the xerogel obtained from the two hydrogels revealed different assembly morphologies. While left-handed helical fibers were observed for the amine-acid based xerogel, acid-amine underwent self-assembly to afford smooth fibers. Fourier transform infrared spectroscopy, fluorescence, and X-ray diffraction measurements combined with density functional theory calculations suggested that the different self-assembly patterns of gelators resulted in opposite electric charges on the xerogel surfaces, in line with Zeta potential measurements. Based on these opposite charges resulting from their different self-assemblies, both xerogels demonstrated efficient dye adsorption abilities with different selectivities. Interestingly, the adsorption performance was not influenced by the salt in the dye solution. Furthermore, the xerogels still showed high dye adsorption efficiency after four cycles. These results provide a two-component hydrogel method for the purification of dye-polluted water systems, while also paving the way for future design of functionalized supramolecular self-assembly systems.
Collapse
Affiliation(s)
- Xiaoyu Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Jiahui Liu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Chaoyue Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Bao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Xiufang Xu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China.
| | - Jian Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
| |
Collapse
|
29
|
Hsu SM, Chakravarthy RD, Cheng H, Wu FY, Lai TS, Lin HC. The role of aromatic side chains on the supramolecular hydrogelation of naphthalimide/dipeptide conjugates. NEW J CHEM 2018. [DOI: 10.1039/c7nj03565a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study demonstrates the influence of an amino-acid side chain of NI-dipeptides on supramolecular hydrogelation and biocompatibility.
Collapse
Affiliation(s)
- Shu-Min Hsu
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu
- Republic of China
| | - Rajan Deepan Chakravarthy
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu
- Republic of China
| | - Hsun Cheng
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu
- Republic of China
| | - Fang-Yi Wu
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu
- Republic of China
| | - Tsung-Sheng Lai
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu
- Republic of China
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering
- National Chiao Tung University
- Hsinchu
- Republic of China
| |
Collapse
|
30
|
Lin S, Qin J, Li Y, Li B, Yang Y. Chirality-Driven Parallel and Antiparallel β-Sheet Secondary Structures of Phe-Ala Lipodipeptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8246-8252. [PMID: 28763619 DOI: 10.1021/acs.langmuir.7b01942] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Four Phe-Ala lipodipeptides with different stereochemical structures are observed to self-assemble into twisted nanoribbons in water. The handedness of the twisted nanoribbons is controlled by the chirality of the phenylalanine near the alkyl chain, while the stacking handedness of the phenyl and carbonyl groups is determined by the alanine at the C-terminal. The homochiral and heterochiral lipodipeptides self-assemble into parallel and antiparallel β-sheet structures, respectively. The 1H NMR, FTIR, X-ray diffraction, and circular dichroism characterizations indicate that these phenomena are mainly driven by the interaction between neighboring phenyl groups and H-bonding among the amide groups.
Collapse
Affiliation(s)
- Shuwei Lin
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Jiaming Qin
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Yi Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Baozong Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Yonggang Yang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| |
Collapse
|