1
|
Kurisu M, Imai M. Concepts of a synthetic minimal cell: Information molecules, metabolic pathways, and vesicle reproduction. Biophys Physicobiol 2023; 21:e210002. [PMID: 38803330 PMCID: PMC11128301 DOI: 10.2142/biophysico.bppb-v21.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/15/2023] [Indexed: 05/29/2024] Open
Abstract
How do the living systems emerge from non-living molecular assemblies? What physical and chemical principles supported the process? To address these questions, a promising strategy is to artificially reconstruct living cells in a bottom-up way. Recently, the authors developed the "synthetic minimal cell" system showing recursive growth and division cycles, where the concepts of information molecules, metabolic pathways, and cell reproduction were artificially and concisely redesigned with the vesicle-based system. We intentionally avoided using the sophisticated molecular machinery of the biological cells and tried to redesign the cells in the simplest forms. This review focuses on the similarities and differences between the biological cells and our synthetic minimal cell concerning each concept of cells. Such comparisons between natural and artificial cells will provide insights on how the molecules should be assembled to create living systems to the wide readers in the field of synthetic biology, artificial cells, and protocells research. This review article is an extended version of the Japanese article "Growth and division of vesicles coupled with information molecules," published in SEIBUTSU-BUTSURI vol. 61, p. 378-381 (2021).
Collapse
Affiliation(s)
- Minoru Kurisu
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Masayuki Imai
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
2
|
Kurisu M, Katayama R, Sakuma Y, Kawakatsu T, Walde P, Imai M. Synthesising a minimal cell with artificial metabolic pathways. Commun Chem 2023; 6:56. [PMID: 36977828 PMCID: PMC10050237 DOI: 10.1038/s42004-023-00856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
A "synthetic minimal cell" is considered here as a cell-like artificial vesicle reproduction system in which a chemical and physico-chemical transformation network is regulated by information polymers. Here we synthesise such a minimal cell consisting of three units: energy production, information polymer synthesis, and vesicle reproduction. Supplied ingredients are converted to energy currencies which trigger the synthesis of an information polymer, where the vesicle membrane plays the role of a template. The information polymer promotes membrane growth. By tuning the membrane composition and permeability to osmolytes, the growing vesicles show recursive reproduction over several generations. Our "synthetic minimal cell" greatly simplifies the scheme of contemporary living cells while keeping their essence. The chemical pathways and the vesicle reproduction pathways are well described by kinetic equations and by applying the membrane elasticity model, respectively. This study provides new insights to better understand the differences and similarities between non-living forms of matter and life.
Collapse
Affiliation(s)
- Minoru Kurisu
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, 980-8578, Japan
| | - Ryosuke Katayama
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, 980-8578, Japan
| | - Yuka Sakuma
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, 980-8578, Japan
| | - Toshihiro Kawakatsu
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, 980-8578, Japan
| | - Peter Walde
- Department of Materials, ETH Zürich, Vladmir-Prelog-Weg 5, CH-8093, Zürich, Switzerland
| | - Masayuki Imai
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, 980-8578, Japan.
| |
Collapse
|
3
|
Wang R, Huang X. Anionic-Surfactant-Stabilized Hydrophobic Ionic-Liquid-Based Bicontinuous Microemulsion as a Medium for Enzymatic Oxidative Polymerization of Aniline. ACS OMEGA 2021; 6:20699-20709. [PMID: 34396015 PMCID: PMC8359135 DOI: 10.1021/acsomega.1c03150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The hydrophobic ionic liquid [C8mim][PF6] (1-octyl-3-methylimidazolium hexafluorophosphate)-based bicontinuous microemulsion stabilized by the anionic surfactant [C4mim][AOT] (1-butyl-3-methylimidazolium bis(2-ethylhexyl) sulfosuccinate) was first tried as a medium for horseradish peroxidase (HRP)-triggered oxidative polymerization of aniline. The effects of the mass ratio of [C8mim][PF6]-to-water (α), the mass fraction of [C4mim][AOT] in the total mixture (γ), and temperature (T) on the enzymatic polymerization were investigated using UV-vis-NIR absorption, electron spin resonance, and small-angle X-ray scattering spectroscopy techniques. The bicontinuous microemulsion is demonstrated to play a template role in the biosynthesis of polyaniline (PANI). The conductivity of the resulting PANI depends on the microemulsion microstructure and the microstructure- and T-dependent catalytic properties of the solubilized HRP. With the increase in α, the conductivity of the synthesized PANI decreases due to the increase in the template curvature (decrease of the microdomain size) and the decrease in the activity and stability of HRP. Compared with α, γ has little effect on the microdomain size of the template; so, the γ-dependent change in the conductivity of PANI is mainly caused by the changes of the microstructure-dependent activity and stability of HRP. Over the range of 20-35 °C, T has little effect on the microdomain size, but it greatly changes the activity and stability of HRP. With the increase in T, the activity of HRP increases steadily, but its stability decreases significantly, which should be one of the reasons why the conductivity of PANI decreases with increasing T. In conclusion, lower values of α, γ, and T are favorable for the biosynthesis of conductive PANI. The present study not only deepens the insight into the role of the template in the process of PANI synthesis, but also opens up a green new way for the biosynthesis of the conducting polymer.
Collapse
Affiliation(s)
- Rongrong Wang
- Key Laboratory of Colloid and Interface
Chemistry of Ministry of Education, Shandong
University, Jinan 250100, China
| | - Xirong Huang
- Key Laboratory of Colloid and Interface
Chemistry of Ministry of Education, Shandong
University, Jinan 250100, China
| |
Collapse
|
4
|
Kurisu M, Aoki H, Jimbo T, Sakuma Y, Imai M, Serrano-Luginbühl S, Walde P. Reproduction of vesicles coupled with a vesicle surface-confined enzymatic polymerisation. Commun Chem 2019. [DOI: 10.1038/s42004-019-0218-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Abstract
Molecular assembly systems that have autonomous reproduction and Darwinian evolution abilities can be considered as minimal cell-like systems. Here we demonstrate the reproduction of cell-sized vesicles composed of AOT, i.e., sodium bis-(2-ethylhexyl) sulfosuccinate, coupled with an enzymatic polymerisation reaction occurring on the surface of the vesicles. The particular reaction used is the horseradish peroxidase-catalysed polymerisation of aniline with hydrogen peroxide as oxidant, which yields polyaniline in its emeraldine salt form (PANI-ES). If AOT micelles are added during this polymerisation reaction, the AOT - PANI-ES vesicles interact with the AOT molecules in the external solution and selectively incorporate them in their membrane, which leads to a growth of the vesicles. If the AOT vesicles also contain cholesterol, the vesicles not only show growth, but also reproduction. An important characteristic of this reproduction system is that the AOT-based vesicles encourage the synthesis of PANI-ES and PANI-ES promotes the growth of AOT vesicles.
Collapse
|
5
|
Walde P, Kashima K, Ćirić-Marjanović G. Synthesizing Polyaniline With Laccase/O 2 as Catalyst. Front Bioeng Biotechnol 2019; 7:165. [PMID: 31355193 PMCID: PMC6635843 DOI: 10.3389/fbioe.2019.00165] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/24/2019] [Indexed: 11/13/2022] Open
Abstract
The polymerization of aniline to polyaniline (PANI) can be achieved chemically, electrochemically or enzymatically. In all cases, the products obtained are mixtures of molecules which are constituted by aniline units. Depending on the synthesis conditions there are variations (i) in the way the aniline molecules are connected, (ii) in the average number of aniline units per molecule, (iii) in the oxidation state, and (iv) in the degree of protonation. For many possible applications, the synthesis of electroconductive PANI with para-N-C-coupled aniline units in their half-oxidized and protonated state is of interest. This is the emeraldine salt form of PANI, abbreviated as PANI-ES. The enzymatic synthesis of PANI-ES is an environmentally friendly alternative to conventional chemical or electrochemical methods. Although many studies have been devoted to the in vitro synthesis of PANI-ES by using heme peroxidases with added hydrogen peroxide (H2O2) as the oxidant, the application of laccases is of particular interest since the oxidant for these multicopper enzymes is molecular oxygen (O2) from air, which is beneficial from environmental and economic points of view. In vivo, laccases participate in the synthesis and degradation of lignin. Various attempts of synthesizing PANI-ES with laccase/O2 in slightly acidic aqueous media from aniline or the linear aniline dimer PADPA (p-aminodiphenylamine) are summarized. Advances in the understanding of the positive effects of soft dynamic templates, as chemical structure guiding additives (anionic polyelectrolytes, micelles, or vesicles), for obtaining PANI-ES-rich products are highlighted. Conceptually, some of these template effects appear to be related to the effect "dirigent proteins" exert in the biosynthesis of lignin. In both cases intermediate radicals are formed enzymatically which then must react in a controlled way in follow-up reactions for obtaining the desired products. These follow-up reactions are controlled to some extent by the templates or specific proteins.
Collapse
Affiliation(s)
- Peter Walde
- Laboratory for Multifunctional Materials, Department of Materials, ETH, Zurich, Switzerland
| | - Keita Kashima
- Laboratory for Multifunctional Materials, Department of Materials, ETH, Zurich, Switzerland
- Department of Chemistry and Bioengineering, National Institute of Technology, Oyama College, Oyama, Japan
| | | |
Collapse
|
6
|
Kashima K, Fujisaki T, Serrano-Luginbühl S, Kissner R, Janošević Ležaić A, Bajuk-Bogdanović D, Ćirić-Marjanović G, Busato S, Ishikawa T, Walde P. Effect of Template Type on the Trametes versicolor Laccase-Catalyzed Oligomerization of the Aniline Dimer p-Aminodiphenylamine (PADPA). ACS OMEGA 2019; 4:2931-2947. [PMID: 31459521 PMCID: PMC6648283 DOI: 10.1021/acsomega.8b03441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/21/2019] [Indexed: 06/10/2023]
Abstract
Many previous studies have shown that (i) the oxidation of aniline or the aniline dimer p-aminodiphenylamine (PADPA) in a slightly acidic aqueous solution can be catalyzed with heme peroxidases or multicopper laccases and that (ii) subsequent reactions lead to oligomeric or polymeric products, which resemble chemically synthesized polyaniline in its conductive emeraldine salt form (PANI-ES), provided that (iii) an anionic "template" is present in the reaction medium. Good templates are anionic polyelectrolytes, micelles, or vesicles. Under optimal conditions, their presence directs the reactions in a positive way toward the desired formation of PANI-ES-type products. The effect of four different types of anionic templates on the formation of PANI-ES-like products from PADPA was investigated and compared by using Trametes versicolor laccase (TvL) as a catalyst in an aqueous pH 3.5 solution at room temperature. All four templates contain sulfonate groups: the sodium salt of the polyelectrolyte sulfonated polystyrene (SPS), micelles from sodium dodecylbenzenesulfonate (SDBS), vesicles from a 1:1 molar mixture of SDBS and decanoic acid, and vesicles from sodium bis(2-ethylhexyl)sulfosuccinate (AOT). Although with all four templates, stable, inkjet-printable solutions or suspensions consisting of PANI-ES-type products were obtained under optimized conditions, considerably higher amounts of TvL were required with SDBS micelles to achieve comparable monomer conversion to PANI-ES-like products during the same time period when compared to those with SPS or the two types of vesicles. This makes SDBS micelles less attractive as templates for the investigated reaction. In situ UV/vis/near-infrared, electron paramagnetic resonance (EPR), and Raman spectroscopy measurements in combination with an high-performance liquid chromatography analysis of extracted reaction products, which were deprotonated and chemically reduced, showed seemingly small but significant differences in the composition of the mixtures obtained when reaching reaction equilibrium after 24 h. With the two vesicle systems, the content of unwanted substituted phenazine units was lower than in the case of SPS polyelectrolyte and SDBS micelles. The EPR spectra indicate a more localized, narrower distribution of electronic states of the paramagnetic centers of the PANI-ES-type products synthesized in the presence of the two vesicle systems when compared to that of the similar products obtained with the SPS polyelectrolyte and SDBS micelles as templates. Overall, the data obtained from the different complementary methods indicate that with the two vesicle systems structurally more uniform (regular) PANI-ES-type products formed. Among the two investigated vesicle systems, for the investigated reaction (oxidation of PADPA with TvL and O2), AOT appears a somewhat better choice as it leads to a higher content of the PANI-ES polaron form.
Collapse
Affiliation(s)
- Keita Kashima
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- Department
of Materials Chemistry and Bioengineering, National Institute of Technology, Oyama College, 771 Nakakuki, Oyama, Tochigi 323-0806, Japan
| | - Tomoyuki Fujisaki
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- Department
of Materials Chemistry and Bioengineering, National Institute of Technology, Oyama College, 771 Nakakuki, Oyama, Tochigi 323-0806, Japan
| | | | - Reinhard Kissner
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | | | - Danica Bajuk-Bogdanović
- Faculty
of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Gordana Ćirić-Marjanović
- Faculty
of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Stephan Busato
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Takashi Ishikawa
- Department
of Biology and Chemistry, Paul Scherrer
Institute (PSI), CH-5231 Villigen, Switzerland
| | - Peter Walde
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
7
|
Serrano-Luginbühl S, Ruiz-Mirazo K, Ostaszewski R, Gallou F, Walde P. Soft and dispersed interface-rich aqueous systems that promote and guide chemical reactions. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0042-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Zhang Y, Serrano-Luginbühl S, Kissner R, Milojević-Rakić M, Bajuk-Bogdanović D, Ćirić-Marjanović G, Wang Q, Walde P. Enzymatic Synthesis of Highly Electroactive Oligoanilines from a p-Aminodiphenylamine/Aniline Mixture with Anionic Vesicles as Templates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9153-9166. [PMID: 29989829 DOI: 10.1021/acs.langmuir.8b00953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oligoanilines with characteristic properties of the electrically conductive emeraldine salt form of polyaniline (PANI-ES) are promising molecules for various applications. A mixture of such oligoanilines can be obtained, for example, enzymatically under mild conditions from the linear aniline dimer p-aminodiphenylamine (PADPA) with hydrogen peroxide (H2O2) and low amounts of horseradish peroxidase (HRP) in an aqueous pH = 4.3 suspension of anionic vesicles formed from AOT, the sodium salt of bis(2-ethylhexyl)sulfosuccinate. However, the simultaneous formation of undesired side products containing phenazine-type units or oxygen atoms is unsatisfactory. We have found that this situation can be improved considerably by using a mixture of PADPA and aniline instead of PADPA only but otherwise nearly identical conditions. The PANI-ES-like oligoaniline products that are obtained from the PADPA and aniline mixture were not only found to have much lower contents of phenazine-type units and not contain oxygen atoms but also were shown to be more electroactive in cyclic voltammetry measurements than the PANI-ES-like products obtained from PADPA only. The AOT vesicle suspension remained stable without product precipitation during and after the entire reaction so that it could be analyzed by in situ UV/visible/near-infrared, in situ electron paramagnetic resonance, and in situ Raman spectroscopy measurements. These measurements were complemented with ex situ high-performance liquid chromatography analyses of the deprotonated and reduced products formed from mixtures of PADPA and either fully or partially deuterated aniline. On the basis of the results obtained, a reaction mechanism is proposed for explaining this improved HRP-triggered, vesicle-assisted synthesis of electroactive PANI-ES-like products. The oligomeric products obtained can be further used, without additional special workup, for example, to coat electrodes for their possible application in biosensor devices.
Collapse
Affiliation(s)
- Ya Zhang
- Laboratory of Polymer Chemistry, Department of Materials , ETH Zürich , Vladimir-Prelog-Weg 5 , CH-8093 Zurich , Switzerland
- Key Laboratory of Science and Technology of Eco-Textile , Jiangnan University , Lihu Avenue 1800 , 214122 Wuxi , China
| | - Sandra Serrano-Luginbühl
- Laboratory of Polymer Chemistry, Department of Materials , ETH Zürich , Vladimir-Prelog-Weg 5 , CH-8093 Zurich , Switzerland
| | - Reinhard Kissner
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 2 , CH-8093 Zurich , Switzerland
| | - Maja Milojević-Rakić
- Faculty of Physical Chemistry , University of Belgrade , Studentski trg 12-16 , 11158 Belgrade , Serbia
| | - Danica Bajuk-Bogdanović
- Faculty of Physical Chemistry , University of Belgrade , Studentski trg 12-16 , 11158 Belgrade , Serbia
| | - Gordana Ćirić-Marjanović
- Faculty of Physical Chemistry , University of Belgrade , Studentski trg 12-16 , 11158 Belgrade , Serbia
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile , Jiangnan University , Lihu Avenue 1800 , 214122 Wuxi , China
| | - Peter Walde
- Laboratory of Polymer Chemistry, Department of Materials , ETH Zürich , Vladimir-Prelog-Weg 5 , CH-8093 Zurich , Switzerland
| |
Collapse
|
9
|
Kashima K, Fujisaki T, Serrano-Luginbühl S, Khaydarov A, Kissner R, Ležaić AJ, Bajuk-Bogdanović D, Ćirić-Marjanović G, Schuler LD, Walde P. How experimental details matter. The case of a laccase-catalysed oligomerisation reaction. RSC Adv 2018; 8:33229-33242. [PMID: 35548148 PMCID: PMC9086443 DOI: 10.1039/c8ra05731a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/17/2018] [Indexed: 01/29/2023] Open
Abstract
The Trametes versicolor laccase (TvL)-catalysed oligomerisation of the aniline dimer p-aminodiphenylamine (PADPA) was investigated in an aqueous medium of pH = 3.5, containing 80–100 nm-sized anionic vesicles formed from AOT, the sodium salt of bis(2-ethylhexyl)sulfosuccinic acid. If run under optimal conditions, the reaction yields oligomeric products which resemble the emeraldine salt form of polyaniline (PANI-ES) in its polaron state, known to be the only oxidation state of linear PANI which is electrically conductive. The vesicles serve as “templates” for obtaining products with the desired PANI-ES-like features. For this complex, heterogeneous, vesicle-assisted, and enzyme-mediated reaction, in which dissolved dioxygen also takes part as a re-oxidant for TvL, small changes in the composition of the reaction mixture can have significant effects. Initial conditions may not only affect the kinetics of the reaction, but also the outcome, i.e., the product distribution once the reaction reaches its equilibrium state. While a change in the reaction temperature from T ≈ 25 to 5 °C mainly influenced the rate of reaction, increase in enzyme concentration and the presence of millimolar concentrations of chloride ions were found to have significant undesired effects on the outcome of the reaction. Chloride ions, which may originate from the preparation of the pH = 3.5 solution, inhibit TvL, such that higher TvL concentrations are required than without chloride to yield the same product distribution for the same reaction runtime as in the absence of chloride. With TvL concentrations much higher than the elaborated value, the products obtained clearly were different and over-oxidised. Thus, a change in the activity of the enzyme was found to have influence not only on kinetics but also led to a change in the final product distribution, molecular structure and electrical properties, which was a surprising find. The complementary analytical methods which we used in this work were in situ UV/vis/NIR, EPR, and Raman spectroscopy measurements, in combination with a detailed ex situ HPLC analysis and molecular dynamics simulations. With the results obtained, we would like to recall the often neglected or ignored fact that it is important to describe and pay attention to the experimental details, since this matters for being able to perform experiments in a reproducible way. A laccase-catalysed oligomerisation of p-aminodiphenylamine was investigated in an aqueous medium containing 80–100 nm-sized anionic vesicles formed from AOT, the sodium salt of bis(2-ethylhexyl)sulfosuccinic acid.![]()
Collapse
Affiliation(s)
- Keita Kashima
- Department of Materials
- ETH Zurich
- 8093 Zürich
- Switzerland
- Department of Materials Chemistry and Bioengineering
| | - Tomoyuki Fujisaki
- Department of Materials
- ETH Zurich
- 8093 Zürich
- Switzerland
- Department of Materials Chemistry and Bioengineering
| | | | | | - Reinhard Kissner
- Laboratory of Inorganic Chemistry
- Department of Chemistry and Applied Biosciences
- 8093 Zürich
- Switzerland
| | | | | | | | | | - Peter Walde
- Department of Materials
- ETH Zurich
- 8093 Zürich
- Switzerland
| |
Collapse
|
10
|
Isabettini S, Massabni S, Kohlbrecher J, Schuler LD, Walde P, Sturm M, Windhab EJ, Fischer P, Kuster S. Understanding the Enhanced Magnetic Response of Aminocholesterol Doped Lanthanide-Ion-Chelating Phospholipid Bicelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8533-8544. [PMID: 28759249 DOI: 10.1021/acs.langmuir.7b01370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cholesterol (Chol-OH) and its conjugates are powerful molecules for engineering the physicochemical and magnetic properties of phospholipid bilayers in bicelles. Introduction of aminocholesterol (3β-amino-5-cholestene, Chol-NH2) in bicelles composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and the thulium-ion-chelating phospholipid 1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylene triaminepentaacetate (DMPE-DTPA/Tm3+) results in unprecedented high magnetic alignments by selectively tuning the magnetic susceptibility Δχ of the bilayer. However, little is known on the underlying mechanisms behind the magnetic response and, more generally, on the physicochemical forces governing a Chol-NH2 doped DMPC bilayer. We tackled this shortcoming with a multiscale bottom-up comparative investigation of Chol-OH and Chol-NH2 mixed with DMPC. First, simplified monolayer models on a Langmuir trough were employed to compare the two steroid molecules at various contents in DMPC. In a second step, a molecular dynamics (MD) simulation allowed for a more representative model of the bicelle bilayer while monitoring the amphiphiles and their interactions on the molecular level. In a final step, we moved away from the models and investigated the effect of temperature on the structure and magnetic alignment of Chol-NH2 doped bicelles by SANS. The DMPC/steroid monolayer studies showed that Chol-OH induces a larger condensation effect than Chol-NH2 at steroid contents of 16 and 20 mol %. However, this tendency was inversed at steroid contents of 10, 30, and 40 mol %. Although the MD simulation with 16 mol % steroid revealed that both compounds induce a liquid-ordered state in DMPC, the bilayer containing Chol-NH2 was much less ordered than the analogous system containing Chol-OH. Chol-NH2 underwent significantly more hydrogen bonding interactions with neighboring DMPC lipids than Chol-OH. It seems that, by altering the dynamics of the hydrophilic environment of the bicelle, Chol-NH2 changes the crystal field and angle of the phospholipid-lanthanide DMPE-DTPA/Tm3+ complex. These parameters largely determine the magnetic susceptibility Δχ of the complex, explaining the SANS results, which show significant differences in magnetic alignment of the steroid doped bicelles. Highly magnetically alignable DMPC/Chol-NH2/DMPE-DTPA/Tm3+ (molar ratio 16:4:5:5) bicelles were achieved up to temperatures of 35 °C before a thermoreversible rearrangement into nonalignable vesicles occurred. The results confirm the potential of Chol-NH2 doped bicelles to act as building blocks for the development of the magnetically responsive soft materials of tomorrow.
Collapse
Affiliation(s)
- Stéphane Isabettini
- Laboratory of Food Process Engineering, ETH Zürich , Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Sarah Massabni
- Laboratory of Food Process Engineering, ETH Zürich , Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Joachim Kohlbrecher
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute , 5232 Villigen PSI, Switzerland
| | | | - Peter Walde
- Department of Materials, ETH Zürich , Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Marina Sturm
- Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Erich J Windhab
- Laboratory of Food Process Engineering, ETH Zürich , Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Peter Fischer
- Laboratory of Food Process Engineering, ETH Zürich , Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Simon Kuster
- Laboratory of Food Process Engineering, ETH Zürich , Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
11
|
Luginbühl S, Iwasaki F, Chirackal Varkey E, Umakoshi H, Walde P. A Novel Role of Vesicles as Templates for the Oxidation and Oligomerization of p-Aminodiphenylamine by Cytochrome c. Helv Chim Acta 2017. [DOI: 10.1002/hlca.201700027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sandra Luginbühl
- Polymer Chemistry Group; Department of Materials (D-MATL); ETH Zürich; Vladimir Prelog-Weg 5 CH-8093 Zürich
| | - Fumihiko Iwasaki
- Polymer Chemistry Group; Department of Materials (D-MATL); ETH Zürich; Vladimir Prelog-Weg 5 CH-8093 Zürich
- Bio-Inspired Chemical Engineering Lab; Division of Chemical Engineering; Graduate School of Engineering Science; Osaka University; 1-3 Machikaneyamacho Toyonaka Osaka 560-8531 Japan
| | - Elizabeth Chirackal Varkey
- Polymer Chemistry Group; Department of Materials (D-MATL); ETH Zürich; Vladimir Prelog-Weg 5 CH-8093 Zürich
| | - Hiroshi Umakoshi
- Bio-Inspired Chemical Engineering Lab; Division of Chemical Engineering; Graduate School of Engineering Science; Osaka University; 1-3 Machikaneyamacho Toyonaka Osaka 560-8531 Japan
| | - Peter Walde
- Polymer Chemistry Group; Department of Materials (D-MATL); ETH Zürich; Vladimir Prelog-Weg 5 CH-8093 Zürich
| |
Collapse
|
12
|
Iwasaki F, Luginbühl S, Suga K, Walde P, Umakoshi H. Fluorescent Probe Study of AOT Vesicle Membranes and Their Alteration upon Addition of Aniline or the Aniline Dimer p-Aminodiphenylamine (PADPA). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1984-1994. [PMID: 28161960 DOI: 10.1021/acs.langmuir.6b04480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Artificial vesicles formed from sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in aqueous solution are used successfully as additives for enzymatic oligomerizations or polymerizations of aniline or the aniline dimer p-aminodiphenylamine (PADPA) under slightly acidic conditions (e.g., pH 4.3 with horseradish peroxidase and hydrogen peroxide as oxidants). In these systems, the reactions occur membrane surface-confined. Therefore, (i) the physicochemical properties of the vesicle membrane and (ii) the interaction of aniline or PADPA with the AOT membrane play crucial roles in the progress and final outcome of the reactions. For this reason, the properties of AOT vesicles with and without added aniline or PADPA were investigated by using two fluorescent membrane probes: 1,6-diphenyl-1,3,5-hexatriene (DPH) and 6-lauroyl-2-dimethylaminonaphthalene (Laurdan). DPH and Laurdan were used as "sensors" of the membrane fluidity, surface polarity, and membrane phase state. Moreover, the effect of hexanol, alone or in combination with aniline or PADPA, as a possible modifier of the AOT membrane, was also studied with the aim of evaluating whether the membrane fluidity and surface polarity is altered significantly by hexanol, which, in turn, may have an influence on the mentioned types of reactions. The data obtained indicate that the AOT vesicle membrane at room temperature and pH 4.3 (0.1 M NaH2PO4) is more fluid and has a more polar surface than in the case of fluid phospholipid vesicle membranes formed from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Furthermore, the fluorescence measurements indicate that mixed AOT-hexanol membranes are less fluid than pure AOT membranes and that they have a lower surface polarity than pure AOT membranes. PADPA strongly binds to AOT and to mixed AOT/hexanol membranes and leads to drastic changes in the membrane properties (decrease in fluidity and surface polarity), resulting in Laurdan fluorescence spectra, which are characteristic for intramembrane phase separations (coexistence of ordered and disordered domains). This means that highly fluid AOT membranes transform upon the addition of PADPA into membranes that have ordered domains. Although the relevance of this finding for the enzymatic oligomerization of PADPA is not yet clear, it is also of interest if one likes to use heterogeneous vesicle membranes as additives for carrying out membrane surface-confined reactions that do not necessarily involve PADPA as a reactant.
Collapse
Affiliation(s)
- Fumihiko Iwasaki
- Bio-Inspired Chemical Engineering Lab, Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Sandra Luginbühl
- Laboratory of Polymer Chemistry, Department of Materials, ETH Zürich , Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Keishi Suga
- Bio-Inspired Chemical Engineering Lab, Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Peter Walde
- Laboratory of Polymer Chemistry, Department of Materials, ETH Zürich , Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Hiroshi Umakoshi
- Bio-Inspired Chemical Engineering Lab, Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
13
|
Ćirić-Marjanović G, Milojević-Rakić M, Janošević-Ležaić A, Luginbühl S, Walde P. Enzymatic oligomerization and polymerization of arylamines: state of the art and perspectives. CHEMICKE ZVESTI 2016; 71:199-242. [PMID: 28775395 PMCID: PMC5495875 DOI: 10.1007/s11696-016-0094-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/16/2016] [Indexed: 11/28/2022]
Abstract
The literature concerning the oxidative oligomerization and polymerization of various arylamines, e.g., aniline, substituted anilines, aminonaphthalene and its derivatives, catalyzed by oxidoreductases, such as laccases and peroxidases, in aqueous, organic, and mixed aqueous organic monophasic or biphasic media, is reviewed. An overview of template-free as well as template-assisted enzymatic syntheses of oligomers and polymers of arylamines is given. Special attention is paid to mechanistic aspects of these biocatalytic processes. Because of the nontoxicity of oxidoreductases and their high catalytic efficiency, as well as high selectivity of enzymatic oligomerizations/polymerizations under mild conditions-using mainly water as a solvent and often resulting in minimal byproduct formation-enzymatic oligomerizations and polymerizations of arylamines are environmentally friendly and significantly contribute to a "green" chemistry of conducting and redox-active oligomers and polymers. Current and potential future applications of enzymatic polymerization processes and enzymatically synthesized oligo/polyarylamines are discussed.
Collapse
Affiliation(s)
- Gordana Ćirić-Marjanović
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Maja Milojević-Rakić
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Aleksandra Janošević-Ležaić
- Department of Physical Chemistry and Instrumental Methods, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Sandra Luginbühl
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Peter Walde
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| |
Collapse
|