1
|
Ghaffarzadeh Bakhshayesh A, Li H. Concave Magnetic-Responsive Hydrogel Discs for Enhanced Bioassays. BIOSENSORS 2024; 14:596. [PMID: 39727861 DOI: 10.3390/bios14120596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Receptor-based biosensors often suffer from slow analyte diffusion, leading to extended assay times. Moreover, existing methods to enhance diffusion can be complex and costly. In response to this challenge, we presented a rapid and cost-effective technique for fabricating concave magnetic-responsive hydrogel discs (CMDs) by straightforward pipetting directly onto microscope glass slides. This approach enables immediate preparation and customization of hydrogel properties such as porosity, magnetic responsiveness, and embedded particles and is adaptable for use with microarray printers. The concave design increased the surface area by 43% compared to conventional hemispherical hydrogels, enhancing diffusion rates and accelerating reactions. By incorporating superparamagnetic particles, the hydrogels become magnetically responsive, allowing for stirring within reagent droplets using magnets to improve mixing. Our experimental results showed that CMDs dissolved approximately 2.5 times faster than hemispherical ones. Numerical simulations demonstrated up to a 46% improvement in diffusion speed within the hydrogel. Particles with lower diffusion coefficients, like human antibodies, benefited most from the concave design, resulting in faster biosensor responses. The increased surface area and ease of fabrication make our CMDs efficient and adaptable for various biological and biomedical applications, particularly in point-of-care diagnostics where rapid and accurate biomarker detection is critical.
Collapse
Affiliation(s)
| | - Huiyan Li
- School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
2
|
Wolff HJM, Linkhorst J, Göttlich T, Savinsky J, Krüger AJD, de Laporte L, Wessling M. Soft temperature-responsive microgels of complex shape in stop-flow lithography. LAB ON A CHIP 2020; 20:285-295. [PMID: 31802080 DOI: 10.1039/c9lc00749k] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stop-flow lithography (SFL) has emerged as a facile high-throughput fabrication method for μm-sized anisometric particles; yet, the fabrication of soft, anisometric microgels has not frequently been addressed in the literature. Furthermore, and to the best of the authors' knowledge, no soft, complex-shaped microgels with temperature-responsive behavior have been fabricated with this technology before. However, such microgels have tremendous potential as building blocks and actuating elements in rapidly developing fields, such as tissue engineering and additive manufacturing of soft polymeric building blocks, bio-hybrid materials, or soft micro-robotics. Given their great potential, we prove in this work that SFL is a viable method for the fabrication of soft, temperature-responsive, and complex-shaped microgels. The microgels, fabricated in this work, consist of poly(N-isopropylacrylamide) (pNIPAm), which is crosslinked with N,N'-methylenebis(acrylamide). The results confirm that the shape of the pNIPAm microgels is determined by the transparency mask, used in SFL. Furthermore, it is shown that, in order to realize stable microgels, a minimum threshold of crosslinker concentration of 2 wt% is required. Above this threshold, the stiffness of pNIPAm microgels can be deliberately altered by adjusting the concentration of the crosslinker. The fabricated pNIPAm microgels show the targeted temperature-responsive behavior. Within this context, temperature-dependent reversible swelling is confirmed, even for fractal-like geometries, such as micro snowflakes. Thus, these microgels provide the targeted unique combination of softness, shape complexity, and temperature responsiveness and increase the freedom of design for actuated building blocks.
Collapse
Affiliation(s)
- Hanna J M Wolff
- RWTH Aachen University, AVT.CVT - Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany.
| | - John Linkhorst
- RWTH Aachen University, AVT.CVT - Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany.
| | - Tim Göttlich
- RWTH Aachen University, AVT.CVT - Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany.
| | - Johann Savinsky
- RWTH Aachen University, AVT.CVT - Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany.
| | - Andreas J D Krüger
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Laura de Laporte
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany and RWTH Aachen University, ITMC - Institute of Technical and Macromolecular Chemistry, Worringerweg 2, 52074 Aachen, Germany
| | - Matthias Wessling
- RWTH Aachen University, AVT.CVT - Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany. and DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| |
Collapse
|
3
|
Yu H, Pan K, Deng J. Cellulose Concurrently Induces Predominantly One-Handed Helicity in Helical Polymers and Controls the Shape of Optically Active Particles Thereof. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
4
|
Wang Y, Song S, Yuan J, Zhu L, Pan M, Liu G. Architecture and Performance of Raspberry-like Colloidal Particle Clusters via Self-Assembly of in Situ Generated Janus Particles. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00937] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yajiao Wang
- Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Shaofeng Song
- Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Jinfeng Yuan
- Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Lei Zhu
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| | - Mingwang Pan
- Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Gang Liu
- Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| |
Collapse
|
5
|
Li M, Joung D, Hwang DK. Macroporous-Enabled Highly Deformable Layered Hydrogels with Designed pH Response. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6856-6860. [PMID: 29792803 DOI: 10.1021/acs.langmuir.8b00653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Environment-responsive hydrogel structures are of great interest in materials research and have a wide range of applications. By using a flow lithography technique, we report a one-step and high-throughput fabrication method for the synthesis of highly pH-responsive hydrogels with designed shape transformations. In this method, heterogeneous hydrogels with porous and nonporous layers are synthesized using a single UV exposure in a microfluidic channel. During the UV polymerization, the porous layers, which are formed by using polymerization-induced phase separation (PIPS), significantly increase the swelling capability and enhance the swelling rate of the hydrogels. Because the flow-lithography approach allows various patterns of porous/nonporous layers with great control and enables the simple integration of PIPS, resultant layered hydrogels show extraordinary deformations with desired pH response. More importantly, our fabrication approach can not only make 2D deformation of hydrogel structures such as bending but also can achieve 3D structural deformation such as helical and buckling structures, enabled by nonuniform UV polymerization we developed.
Collapse
Affiliation(s)
- Minggan Li
- Department of Chemical Engineering , Ryerson University , 350 Victoria Street , Toronto , Ontario M5B 2K3 , Canada
- Keenan Research Centre for Biomedical Science , St. Michael's Hospital , 30 Bond Street , Toronto , Ontario M5B 1W8 , Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Ryerson University and St. Michael's Hospital , 30 Bond Street , Toronto , Ontario M5B 1W8 , Canada
| | - Dehi Joung
- Department of Chemical Engineering , Ryerson University , 350 Victoria Street , Toronto , Ontario M5B 2K3 , Canada
- Keenan Research Centre for Biomedical Science , St. Michael's Hospital , 30 Bond Street , Toronto , Ontario M5B 1W8 , Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Ryerson University and St. Michael's Hospital , 30 Bond Street , Toronto , Ontario M5B 1W8 , Canada
| | - Dae Kun Hwang
- Department of Chemical Engineering , Ryerson University , 350 Victoria Street , Toronto , Ontario M5B 2K3 , Canada
- Keenan Research Centre for Biomedical Science , St. Michael's Hospital , 30 Bond Street , Toronto , Ontario M5B 1W8 , Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Ryerson University and St. Michael's Hospital , 30 Bond Street , Toronto , Ontario M5B 1W8 , Canada
| |
Collapse
|
6
|
Yu B, Cong H, Peng Q, Gu C, Tang Q, Xu X, Tian C, Zhai F. Current status and future developments in preparation and application of nonspherical polymer particles. Adv Colloid Interface Sci 2018; 256:126-151. [PMID: 29705026 DOI: 10.1016/j.cis.2018.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 03/30/2018] [Accepted: 04/14/2018] [Indexed: 11/16/2022]
Abstract
Nonspherical polymer particles (NPPs) are nano/micro-particulates of macromolecules that are anisotropic in shape, and can be designed anisotropic in chemistry. Due to shape and surface anisotropies, NPPs bear many unique structures and fascinating properties which are distinctly different from those of spherical polymer particles (SPPs). In recent years, the research on NPPs has surprisingly blossomed in recent years, and many practical materials based on NPPs with potential applications in photonic device, material science and biomedical engineering have been generated. In this review, we give a systematic, balanced and comprehensive summary of the main aspects of NPPs related to their preparation and application, and propose perspectives for the future developments of NPPs.
Collapse
Affiliation(s)
- Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Qiaohong Peng
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Chuantao Gu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Qi Tang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Xiaodan Xu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Chao Tian
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Feng Zhai
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
7
|
Wang B, Prinsen P, Wang H, Bai Z, Wang H, Luque R, Xuan J. Macroporous materials: microfluidic fabrication, functionalization and applications. Chem Soc Rev 2017; 46:855-914. [DOI: 10.1039/c5cs00065c] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This article provides an up-to-date highly comprehensive overview (594 references) on the state of the art of the synthesis and design of macroporous materials using microfluidics and their applications in different fields.
Collapse
Affiliation(s)
- Bingjie Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Pepijn Prinsen
- Departamento de Quimica Organica
- Universidad de Cordoba
- Campus de Rabanales
- Cordoba
- Spain
| | - Huizhi Wang
- School of Engineering and Physical Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - Zhishan Bai
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Hualin Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Rafael Luque
- Departamento de Quimica Organica
- Universidad de Cordoba
- Campus de Rabanales
- Cordoba
- Spain
| | - Jin Xuan
- School of Engineering and Physical Sciences
- Heriot-Watt University
- Edinburgh
- UK
| |
Collapse
|