1
|
Vinterbladh I, Soussi RH, Forsman J, Bouhallab S, Lund M. Strong electrostatic attraction drives milk heteroprotein complex coacervation. Int J Biol Macromol 2025; 286:137790. [PMID: 39603294 DOI: 10.1016/j.ijbiomac.2024.137790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Coacervates of oppositely charged milk proteins are used in functional food development, mainly to encapsulate bioactives. To uncover the driving forces behind coacervates formation, we study the association of lactoferrin and β-lactoglobulin at amino-acid level detail, using molecular simulations. Our findings show that inter-protein electrostatic interactions dominate and are, surprisingly, equally divided between an isotropic part, due to monopole-monopole attraction of the oppositely charged proteins, and an anisotropic part due to uneven surface charge distributions. In good agreement with recent experimental association constants, the calculated protein-protein interaction free energy is strongly dependent on pH and salt concentration. In addition to thermodynamics, we also investigate amino acid contacts in microstates of trimeric and pentameric protein complexes, and identify interaction hot-spots that drive heteroprotein complex coacervation process.
Collapse
Affiliation(s)
- Isabel Vinterbladh
- Division of Computational Chemistry, Lund University, Naturvetarvägen 24, SE-223 62 Lund, Sweden.
| | - Rima Hachfi Soussi
- INRAE, Institut Agro, STLO, 65 Rue de Saint Brieuc, 35042 Rennes, France; Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Jan Forsman
- Division of Computational Chemistry, Lund University, Naturvetarvägen 24, SE-223 62 Lund, Sweden
| | - Said Bouhallab
- INRAE, Institut Agro, STLO, 65 Rue de Saint Brieuc, 35042 Rennes, France
| | - Mikael Lund
- Division of Computational Chemistry, Lund University, Naturvetarvägen 24, SE-223 62 Lund, Sweden; LINXS - Institute of advanced Neutron and X-ray Science, Lund University, Scheelevägen 19, 223 70 SE-Lund, Sweden.
| |
Collapse
|
2
|
Mims JT, Tsuna L, Spangler EJ, Laradji M. Nanoparticles insertion and dimerization in polymer brushes. J Chem Phys 2024; 160:084906. [PMID: 38415837 DOI: 10.1063/5.0188915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/28/2024] [Indexed: 02/29/2024] Open
Abstract
Molecular dynamics simulations are conducted to systematically investigate the insertion of spherical nanoparticles (NPs) in polymer brushes as a function of their size, strength of their interaction with the polymers, polymer grafting density, and polymer chain length. For attractive interactions between the NPs and the polymers, the depth of NPs' penetration in the brush results from a competition between the enthalpic gain due to the favorable polymer-NP interaction and the effect of osmotic pressure resulting from displaced polymers by the NP's volume. A large number of simulations show that the average depth of the NPs increases by increasing the strength of the interaction strength. However, it decreases by increasing the NPs' diameter or increasing the polymer grafting density. While the NPs' effect on the polymer density is local, their effect on their conformations is long-ranged and extends laterally over length scales larger than the NP's size. This effect is manifested by the emergence of laterally damped oscillations in the normal component of the chains' radius of gyration. Interestingly, we found that for high enough interaction strength, two NPs dimerize in the polymer brush. The dimer is parallel to the substrate if the NPs' depth in the brush is shallow. However, the dimer is perpendicular to the substrate if the NPs' are deep in the brush. These results imply that polymer brushes can be used as a tool to localize and self-assemble NPs in polymer brushes.
Collapse
Affiliation(s)
- Jacob T Mims
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, USA
| | - Lavi Tsuna
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, USA
| | - Eric J Spangler
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, USA
| | - Mohamed Laradji
- Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, USA
| |
Collapse
|
3
|
Blanco PM, Narambuena CF, Madurga S, Mas F, Garcés JL. Unusual Aspects of Charge Regulation in Flexible Weak Polyelectrolytes. Polymers (Basel) 2023; 15:2680. [PMID: 37376324 PMCID: PMC10302168 DOI: 10.3390/polym15122680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
This article reviews the state of the art of the studies on charge regulation (CR) effects in flexible weak polyelectrolytes (FWPE). The characteristic of FWPE is the strong coupling of ionization and conformational degrees of freedom. After introducing the necessary fundamental concepts, some unconventional aspects of the the physical chemistry of FWPE are discussed. These aspects are: (i) the extension of statistical mechanics techniques to include ionization equilibria and, in particular, the use of the recently proposed Site Binding-Rotational Isomeric State (SBRIS) model, which allows the calculation of ionization and conformational properties on the same foot; (ii) the recent progresses in the inclusion of proton equilibria in computer simulations; (iii) the possibility of mechanically induced CR in the stretching of FWPE; (iv) the non-trivial adsorption of FWPE on ionized surfaces with the same charge sign as the PE (the so-called "wrong side" of the isoelectric point); (v) the influence of macromolecular crowding on CR.
Collapse
Affiliation(s)
- Pablo M. Blanco
- Physical Chemistry Unit, Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), Barcelona University (UB), 08028 Barcelona, Catalonia, Spain;
| | - Claudio F. Narambuena
- Grupo de Bionanotecnologia y Sistemas Complejos, Infap-CONICET & Facultad Regional San Rafael, Universidad Tecnológica Nacional, San Rafael 5600, Argentina;
| | - Sergio Madurga
- Physical Chemistry Unit, Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), Barcelona University (UB), 08028 Barcelona, Catalonia, Spain;
| | - Francesc Mas
- Physical Chemistry Unit, Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), Barcelona University (UB), 08028 Barcelona, Catalonia, Spain;
| | - Josep L. Garcés
- Chemistry Department, Technical School of Agricultural Engineering & AGROTECNIO, Lleida University (UdL), 25003 Lleida, Catalonia, Spain;
| |
Collapse
|
4
|
Zhou T, Zhao J, He X, Shi L, Wen L. Effect of brush roughness on volume charge density. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Al-Bataineh QM, Telfah AD, Shpacovitch V, Tavares CJ, Hergenröder R. Switchable Polyacrylic Acid Polyelectrolyte Brushes for Surface Plasmon Resonance Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094283. [PMID: 37177486 PMCID: PMC10181114 DOI: 10.3390/s23094283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Imaging wide-field surface plasmon resonance (SPR) microscopy sensors based on polyacrylic acid polyelectrolyte brushes (PAA PEBs) were designed to enhance the sensitivity of nano-object detection. The switching behavior of the PAA PEBs against changes in the pH values was investigated by analyzing the chemical, morphological, optical, and electrical properties. At pH ~1, the brushes collapse on the surface with the dominance of carboxylic groups (COOH). Upon the increase in the pH to nine, the switching process completes, and the brushes swell from dissociating most of the COOH groups and converting them into COO- groups. The domination of the negatively charged COO- groups increases the electrostatic repulsion in the polymer chains and stretches the brushes. The sensitivity of the SPR sensing device was investigated using a theoretical approach, as well as experimental measurements. The signal-to-noise ratio for a Au layer increases from six to eighteen after coating with PAA PEBs. In addition, the linewidth of the recorded image decreases from six pixels to five pixels by using the Au-PAA layers, which results from the enhanced spatial resolution of the recorded images. Coating a Au-layer with PAA PEBs enhances the sensitivity of the SPR sensing device, and improves the spatial resolution of the recorded image.
Collapse
Affiliation(s)
- Qais M Al-Bataineh
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
- Experimental Physics, TU Dortmund University, 44227 Dortmund, Germany
| | - Ahmad D Telfah
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
- Nanotechnology Center, The University of Jordan, Amman 11942, Jordan
| | - Victoria Shpacovitch
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Carlos J Tavares
- Centre of Physics of Minho and Porto Universities, University of Minho, 4804-533 Guimarães, Portugal
| | - Roland Hergenröder
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| |
Collapse
|
6
|
Zimmermann R, Duval JF, Werner C, Sterling JD. Quantitative insights into electrostatics and structure of polymer brushes from microslit electrokinetic experiments and advanced modelling of interfacial electrohydrodynamics. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Gonzalez Solveyra E, Thompson DH, Szleifer I. Proteins Adsorbing onto Surface-Modified Nanoparticles: Effect of Surface Curvature, pH, and the Interplay of Polymers and Proteins Acid-Base Equilibrium. Polymers (Basel) 2022; 14:739. [PMID: 35215653 PMCID: PMC8878797 DOI: 10.3390/polym14040739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/05/2023] Open
Abstract
Protein adsorption onto nanomaterials is a process of vital significance and it is commonly controlled by functionalizing their surface with polymers. The efficiency of this strategy depends on the design parameters of the nanoconstruct. Although significant amount of work has been carried out on planar surfaces modified with different types of polymers, studies investigating the role of surface curvature are not as abundant. Here, we present a comprehensive and systematic study of the protein adsorption process, analyzing the effect of curvature and morphology, the grafting of polymer mixtures, the type of monomer (neutral, acidic, basic), the proteins in solution, and the conditions of the solution. The theoretical approach we employed is based on a molecular theory that allows to explicitly consider the acid-base reactions of the amino acids in the proteins and the monomers on the surface. The calculations showed that surface curvature modulates the molecular organization in space, but key variables are the bulk pH and salt concentration (in the millimolar range). When grafting the NP with acidic or basic polymers, the surface coating could disfavor or promote adsorption, depending on the solution's conditions. When NPs are in contact with protein mixtures in solution, a nontrivial competitive adsorption process is observed. The calculations reflect the balance between molecular organization and chemical state of polymers and proteins, and how it is modulated by the curvature of the underlying surface.
Collapse
Affiliation(s)
- Estefania Gonzalez Solveyra
- Instituto de Nanosistemas, Universidad Nacional de San Martín-CONICET, San Martín, Buenos Aires B1650, Argentina;
| | - David H. Thompson
- Bindley Bioscience Center, Department of Chemistry, Multi-Disciplinary Cancer Research Facility, Purdue University, West Lafayette, IN 47907, USA;
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
8
|
Lunkad R, Barroso da Silva FL, Košovan P. Both Charge-Regulation and Charge-Patch Distribution Can Drive Adsorption on the Wrong Side of the Isoelectric Point. J Am Chem Soc 2022; 144:1813-1825. [DOI: 10.1021/jacs.1c11676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Raju Lunkad
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 8, 128 43 Prague, Czech Republic
| | - Fernando L. Barroso da Silva
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences at Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-900, Brazil
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 8, 128 43 Prague, Czech Republic
| |
Collapse
|
9
|
Polyelectrolyte-nanoparticle mutual charge regulation and its influence on their complexation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Laktionov MY, Zhulina EB, Borisov OV. Proteins and Polyampholytes Interacting with Polyelectrolyte Brushes and Microgels: The Charge Reversal Concept Revised. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2865-2873. [PMID: 33625232 DOI: 10.1021/acs.langmuir.0c02837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Weak polyampholytes and globular proteins among them can be efficiently absorbed from solutions by polyelectrolyte brushes or microgels even if the net charge of the polyampholyte is of the same sign as that of the brush/microgel. We use a mean-field approach for calculating the free energy of insertion of a probe polyampholyte molecule into a polyelectrolyte brush/microgel. We anticipate that the insertion of the polyampholyte into similarly charged brush/microgel may be thermodynamically favorable due to the gain in the cumulative re-ionization free energy of the pH-sensitive acidic and basic residues. Importantly, we demonstrate that the polyampholyte (protein) charge sign inversion upon transfer from the bulk of the solution to the brush/microgel does not provide sufficient conditions to assure negative re-ionization free energy balance. Thus (in the absence of other driving or stopping mechanisms), charge sign inversion does not necessarily provoke spontaneous absorption of the polyampholyte into the brush/microgel.
Collapse
Affiliation(s)
- Mikhail Y Laktionov
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics, St. Petersburg 197101, Russia
| | - Ekaterina B Zhulina
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics, St. Petersburg 197101, Russia
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Oleg V Borisov
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics, St. Petersburg 197101, Russia
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg 199004, Russia
- CNRS, Université de Pau et des Pays de l'Adour UMR 5254, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, Pau 64000, France
| |
Collapse
|
11
|
Blanco PM, Madurga S, Garcés JL, Mas F, Dias RS. Influence of macromolecular crowding on the charge regulation of intrinsically disordered proteins. SOFT MATTER 2021; 17:655-669. [PMID: 33215185 DOI: 10.1039/d0sm01475c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work we study the coupling between ionization and conformational properties of two IDPs, histatin-5 and β-amyloid 42, in the presence of neutral and charged crowders. The latter is modeled to resemble bovine serum albumin (BSA). With this aim, semi-grand canonical Monte Carlo simulations are performed, so that the IDP charge is a dynamic property, undergoing protonation/deprotonation processes. Both ionization properties (global and specific amino acid charge and binding capacitance) and radius of gyration are analyzed in a large range of pH values and salt concentrations. Without crowder agents, the titration curve of histatin-5, a polycation, is salt-dependent while that of β-amyloid 42, a polyampholyte, is almost unaffected. The salt concentration is found to be particularly relevant at pH values where the protein binding capacitance (directly linked with charge fluctuation) is larger. Upon addition of neutral crowders, charge regulation is observed in histatin-5, while for β-amyloid 42 this effect is very small. The main mechanism for charge regulation is found to be the effective increase in the ionic strength due to the excluded volume. In the presence of charged crowders, a significant increase in the charge of both IDPs is observed in almost all the pH range. In this case, the IDP charge is altered not only by the increase in the effective ionic strength but also by its direct electrostatic interaction with the charged crowders.
Collapse
Affiliation(s)
- Pablo M Blanco
- Physical Chemistry Unit, Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB) of Barcelona University (UB), Barcelona, Catalonia, Spain.
| | - Sergio Madurga
- Physical Chemistry Unit, Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB) of Barcelona University (UB), Barcelona, Catalonia, Spain.
| | - Josep L Garcés
- Chemistry Department, Technical School of Agricultural Engineering & AGROTECNIO of Lleida University (UdL), Lleida, Catalonia, Spain
| | - Francesc Mas
- Physical Chemistry Unit, Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB) of Barcelona University (UB), Barcelona, Catalonia, Spain.
| | - Rita S Dias
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
12
|
Merzougui CE, Roblin P, Aimar P, Venault A, Chang Y, Causserand C, Bacchin P. Pearl-necklace assembly of human serum albumin with the poly(acrylic acid) polyelectrolyte investigated using small angle X-ray scattering (SAXS). SOFT MATTER 2020; 16:9964-9974. [PMID: 33034602 DOI: 10.1039/d0sm01221a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this comprehensive study, the interaction of human serum albumin (HSA) with poly(acrylic acid) (PAA) was explored using small angle X-ray scattering (SAXS) combined with chromatography. The results revealed the formation of a complex between HSA macromolecules and PAA chains but solely under some specific conditions of the ionic strength and pH of the medium. In fact, this binding was found to take place only at pH close to 5 and at low ionic strength (0.15 M). Otherwise, for a higher pH and a salt concentration of 0.75 M the HSA-PAA complex tends to dissociate completely showing the reversibility of the complexation. The assessment of the influence of the HSA/PAA molar ratio on the radius of gyration of the complex suggests that 4 HSA molecules could bind to each 100 kDa PAA chain. In addition, the Porod volume evaluation for the same range of the HSA/PAA ratio confirms this assumption. Finally, an all-atom SAXS modelling study using the BUNCH program was conducted to find a compatible model that fits the HSA-PAA complex scattering data. This model allows us to portray the HSA/PAA complex as a pearl-necklace assembly with 4 HSA molecules on the 100 kDa PAA chain.
Collapse
Affiliation(s)
- Charaf E Merzougui
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Pierre Roblin
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Pierre Aimar
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Antoine Venault
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chung Li, Taiwan
| | - Yung Chang
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chung Li, Taiwan
| | - Christel Causserand
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Patrice Bacchin
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| |
Collapse
|
13
|
Ferrand-Drake del Castillo G, Hailes RLN, Dahlin A. Large Changes in Protonation of Weak Polyelectrolyte Brushes with Salt Concentration-Implications for Protein Immobilization. J Phys Chem Lett 2020; 11:5212-5218. [PMID: 32515599 PMCID: PMC7467743 DOI: 10.1021/acs.jpclett.0c01289] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/09/2020] [Indexed: 05/27/2023]
Abstract
We report for the first time that the protonation behavior of weak polyelectrolyte brushes depends very strongly on ionic strength. The pKa changes by one pH step per order of magnitude in salt concentration. For low salt concentrations (∼1 mM), a very high pH is required to deprotonate a polyacidic brush and a very low pH is required to protonate a polybasic brush. This has major consequences for interactions with other macromolecules, as the brushes are actually almost fully neutral when believed to be charged. We propose that many previous studies on electrostatic interactions between polyelectrolytes and proteins have, in fact, looked at other types of intermolecular forces, in particular, hydrophobic interactions and hydrogen bonds.
Collapse
Affiliation(s)
| | | | - Andreas Dahlin
- Department of Chemistry and
Chemical Engineering, Chalmers University
of Technology, 41296 Gothenburg, Sweden
| |
Collapse
|
14
|
Probing the protein corona around charged macromolecules: interpretation of isothermal titration calorimetry by binding models and computer simulations. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04648-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractIsothermal titration calorimetry (ITC) is a widely used tool to experimentally probe the heat signal of the formation of the protein corona around macromolecules or nanoparticles. If an appropriate binding model is applied to the ITC data, the heat of binding and the binding stoichiometry as well as the binding affinity per protein can be quantified and interpreted. However, the binding of the protein to the macromolecule is governed by complex microscopic interactions. In particular, due to the steric and electrostatic protein–protein interactions within the corona as well as cooperative, charge renormalization effects of the total complex, the application of standard (e.g., Langmuir) binding models is questionable and the development of more appropriate binding models is very challenging. Here, we discuss recent developments in the interpretation of the Langmuir model applied to ITC data of protein corona formation, exemplified for the well-defined case of lysozyme coating highly charged dendritic polyglycerol sulfate (dPGS), and demonstrate that meaningful data can be extracted from the fits if properly analyzed. As we show, this is particular useful for the interpretation of ITC data by molecular computer simulations where binding affinities can be calculated but it is often not clear how to consistently compare them with the ITC data. Moreover, we discuss the connection of Langmuir models to continuum binding models (where no discrete binding sites have to be assumed) and their possible extensions toward the inclusion of leading order cooperative electrostatic effects.
Collapse
|
15
|
Czeslik C, Wittemann A. Adsorption mechanism, secondary structure and local distribution of proteins at polyelectrolyte brushes. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-019-04590-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
16
|
Walkowiak J, Lu Y, Gradzielski M, Zauscher S, Ballauff M. Thermodynamic Analysis of the Uptake of a Protein in a Spherical Polyelectrolyte Brush. Macromol Rapid Commun 2019; 41:e1900421. [DOI: 10.1002/marc.201900421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Jacek Walkowiak
- Institut für Chemie und BiochemieFreie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Yan Lu
- Soft Matter and Functional MaterialsHelmholtz‐Zentrum Berlin für Materialen und Energie Hahn‐Meitner‐Platz 1 14109 Berlin Germany
- Institute of ChemistryUniversity of Potsdam 14467 Potsdam Germany
| | - Michael Gradzielski
- Stranski Laboratorium für Physikalische Chemie und Theoretische ChemieInstitut für ChemieStraße des 17. Juni 124Sekr. TC7Technische Universität Berlin D‐10623 Berlin Germany
| | - Stefan Zauscher
- Mechanical Engineering and Material ScienceDuke University Durham NC 27708 USA
| | - Matthias Ballauff
- Soft Matter and Functional MaterialsHelmholtz‐Zentrum Berlin für Materialen und Energie Hahn‐Meitner‐Platz 1 14109 Berlin Germany
| |
Collapse
|
17
|
High-pressure study of magnetic nanoparticles with a polyelectrolyte brush as carrier particles for enzymes. Colloids Surf B Biointerfaces 2019; 182:110344. [PMID: 31284146 DOI: 10.1016/j.colsurfb.2019.110344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/19/2019] [Accepted: 07/02/2019] [Indexed: 11/20/2022]
Abstract
The recovery of enzymes from a reaction medium can be achieved in a convenient way by using magnetic nanoparticles (MNP) as carriers. Here, we present MNP with a polyelectrolyte brush composed of poly(ethylene imine) (PEI) to provide a benign environment for the immobilized enzyme molecules. Yeast alcohol dehydrogenase (ADH) has been tested for enzymatic activity when it is free in solution or adsorbed on the PEI brush-MNP. Furthermore, the effect of pressure on the enzymatic activity has been studied to reveal activation volumes, which are a sensitive probe of the transition state geometry. The results of this study indicate that the secondary structure of ADH is pressure-stable up to 9 kbar. The enzymatic activity of ADH can be analyzed using Michaelis-Menten kinetics free in solution and adsorbed on the PEI brush-MNP. Remarkably, no significant changes of the Michaelis constant and the activation volume are observed upon adsorption. Thus, it can be assumed that the turnover number of ADH is also the same in the free and adsorbed state. However, the maximum enzymatic rate is reduced when ADH is adsorbed, which must be explained by a lower effective enzyme concentration due to steric hindrance of the enzyme inside the PEI brush of the MNP. In this way, the pressure experiments carried out in this study enable a distinction between steric and kinetic effects on the enzymatic rate of adsorbed ADH.
Collapse
|
18
|
Levin A, Cinar S, Paulus M, Nase J, Winter R, Czeslik C. Analyzing protein-ligand and protein-interface interactions using high pressure. Biophys Chem 2019; 252:106194. [PMID: 31177023 DOI: 10.1016/j.bpc.2019.106194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 01/06/2023]
Abstract
All protein function is based on interactions with the environment. Proteins can bind molecules for their transport, their catalytic conversion, or for signal transduction. They can bind to each other, and they adsorb at interfaces, such as lipid membranes or material surfaces. An experimental characterization is needed to understand the underlying mechanisms, but also to make use of proteins in biotechnology or biomedicine. When protein interactions are studied under high pressure, volume changes are revealed that directly describe spatial contributions to these interactions. Moreover, the strength of protein interactions with ligands or interfaces can be tuned in a smooth way by pressure modulation, which can be utilized in the design of drugs and bio-responsive interfaces. In this short review, selected studies of protein-ligand and protein-interface interactions are presented that were carried out under high pressure. Furthermore, a perspective on bio-responsive interfaces is given where protein-ligand binding is applied to create functional interfacial structures.
Collapse
Affiliation(s)
- Artem Levin
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Süleyman Cinar
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Michael Paulus
- Technische Universität Dortmund, Fakultät Physik/Delta, D-44221 Dortmund, Germany
| | - Julia Nase
- Technische Universität Dortmund, Fakultät Physik/Delta, D-44221 Dortmund, Germany
| | - Roland Winter
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Claus Czeslik
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany.
| |
Collapse
|
19
|
Xu X, Angioletti-Uberti S, Lu Y, Dzubiella J, Ballauff M. Interaction of Proteins with Polyelectrolytes: Comparison of Theory to Experiment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5373-5391. [PMID: 30095921 DOI: 10.1021/acs.langmuir.8b01802] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We discuss recent investigations of the interaction of polyelectrolytes with proteins. In particular, we review our recent studies on the interaction of simple proteins such as human serum albumin (HSA) and lysozyme with linear polyelectrolytes, charged dendrimers, charged networks, and polyelectrolyte brushes. In all cases discussed here, we combined experimental work with molecular dynamics (MD) simulations and mean-field theories. In particular, isothermal titration calorimetry (ITC) has been employed to obtain the respective binding constants Kb and the Gibbs free energy of binding. MD simulations with explicit counterions but implicit water demonstrate that counterion release is the main driving force for the binding of proteins to strongly charged polyelectrolytes: patches of positive charges located on the surface of the protein become multivalent counterions of the polyelectrolyte, thereby releasing a number of counterions condensed on the polyelectrolyte. The binding Gibbs free energy due to counterion release is predicted to scale with the logarithm of the salt concentration in the system, which is verified by both simulations and experiment. In several cases, namely, for the interaction of proteins with linear polyelectrolytes and highly charged hydrophilic dendrimers, the binding constant could be calculated from simulations to very good approximation. This finding demonstrated that in these cases explicit hydration effects do not contribute to the Gibbs free energy of binding. The Gibbs free energy can also be used to predict the kinetics of protein uptake by microgels for a given system by applying dynamic density functional theory. The entire discussion demonstrates that the direct comparison of theory with experiments can lead to a full understanding of the interaction of proteins with charged polymers. Possible implications for applications, such as drug design, are discussed.
Collapse
Affiliation(s)
- Xiao Xu
- School of Chemical Engineering , Nanjing University of Science and Technology , 200 Xiao Ling Wei , Nanjing 210094 , P. R. China
| | - Stefano Angioletti-Uberti
- Department of Materials , Imperial College London , London SW7 2AZ - UK , U.K
- International Research Centre for Soft Matter , Beijing University of Chemical Technology , 100099 Beijing , PR China
| | - Yan Lu
- Soft Matter and Functional Materials , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , 14109 Berlin , Germany
- Institute of Chemistry , University of Potsdam , 14467 Potsdam , Germany
| | - Joachim Dzubiella
- Soft Matter and Functional Materials , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , 14109 Berlin , Germany
- Physikalisches Institut , Albert-Ludwigs-Universität , 79104 Freiburg , Germany
| | - Matthias Ballauff
- Soft Matter and Functional Materials , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , 14109 Berlin , Germany
- Institut für Physik , Humboldt-Universität zu Berlin , 12489 Berlin , Germany
| |
Collapse
|
20
|
Ferrand-Drake Del Castillo G, Koenig M, Müller M, Eichhorn KJ, Stamm M, Uhlmann P, Dahlin A. Enzyme Immobilization in Polyelectrolyte Brushes: High Loading and Enhanced Activity Compared to Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3479-3489. [PMID: 30742441 DOI: 10.1021/acs.langmuir.9b00056] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Catalysis by enzymes on surfaces has many applications. However, strategies for efficient enzyme immobilization with preserved activity are still in need of further development. In this work, we investigate polyelectrolyte brushes prepared by both grafting-to and grafting-from with the aim to achieve high catalytic activity. For comparison, self-assembled monolayers that bind enzymes with the same chemical interactions are included. We use the model enzyme glucose oxidase and two kinds of polymers: anionic poly(acrylic acid) and cationic poly(diethylamino)methyl methacrylate. Surface plasmon resonance and spectroscopic ellipsometry are used for accurate quantification of surface coverage. Besides binding more enzymes, the "3D-like" brush environment enhances the specific activity compared to immobilization on self-assembled monolayers. For grafting-from brushes, multilayers of enzymes were spontaneously and irreversibly immobilized without conjugation chemistry. When the pH was between the pI of the enzyme and the p Ka of the polymer, binding was considerable (thousands of ng/cm2 or up to 50% of the polymer mass), even at physiological ionic strength. However, binding was observed also when the brushes were neutrally charged. For acidic brushes (both grafting-to and grafting-from), the activity was higher for covalent immobilization compared to noncovalent. For grafting-from brushes, a fully preserved specific activity compared to enzymes in the liquid bulk was achieved, both with covalent (acidic brush) and noncovalent (basic brush) immobilization. Catalytic activity of hundreds of pmol cm-2 s-1 was easily obtained for polybasic brushes only tens of nanometers in dry thickness. This study provides new insights for designing functional interfaces based on enzymatic catalysis.
Collapse
Affiliation(s)
| | - Meike Koenig
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
| | - Martin Müller
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
- Technische Universität Dresden, Physical Chemistry of Polymer Materials, Dresden , Germany
| | - Klaus-Jochen Eichhorn
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
| | - Manfred Stamm
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
- Technische Universität Dresden, Physical Chemistry of Polymer Materials, Dresden , Germany
| | - Petra Uhlmann
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
- Department of Chemistry , University of Nebraska-Lincoln , Hamilton Hall, 639 North 12th Street , Lincoln , Nebraska 68588 , United States
| | - Andreas Dahlin
- Department of Chemistry and Chemical Engineering , Chalmers University of Technology , 41296 Göteborg , Sweden
| |
Collapse
|
21
|
Moncho-Jordá A, Germán-Bellod A, Angioletti-Uberti S, Adroher-Benítez I, Dzubiella J. Nonequilibrium Uptake Kinetics of Molecular Cargo into Hollow Hydrogels Tuned by Electrosteric Interactions. ACS NANO 2019; 13:1603-1616. [PMID: 30649858 DOI: 10.1021/acsnano.8b07609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hollow hydrogels represent excellent nano- and microcarriers due to their ability to encapsulate and release large amounts of cargo molecules (cosolutes) such as reactants, drugs, and proteins. In this work, we use a combination of a phenomenological effective cosolute-hydrogel interaction potential and dynamic density functional theory to investigate the full nonequilibrium encapsulation kinetics of charged and dipolar cosolutes by an isolated charged hollow hydrogel immersed in a 1:1 electrolyte aqueous solution. Our analysis covers a broad spectrum of cosolute valences ( zc) and electric dipole moments (μc), as well as hydrogel swelling states and hydrogel charge densities. Our calculations show that, close to the collapsed state, the polar cosolutes are predominantly precluded and the encapsulation process is strongly hindered by the excluded-volume interaction exerted by the polymer network. Different equilibrium and kinetic sorption regimes (interface versus interior) are found depending on the value and sign of zc and the value of μc. For cosolutes of the same sign of charge as the gel, the superposition of steric and electrostatic repulsion leads to an "interaction-controlled" encapsulation process, in which the characteristic time to fill the empty core of the hydrogel grows exponentially with zc. On the other hand, for cosolutes oppositely charged to the gel, we find a "diffusion-controlled" kinetic regime, where cosolutes tend to rapidly absorb into the hydrogel membrane and the encapsulation rate depends only on the cosolute diffusion time across the membrane. Finally, we find that increasing μc promotes the appearance of metastable and stable surface adsorption states. For large enough μc, the kinetics enters an "adsorption-hindered diffusion", where the enhanced surface adsorption imposes a barrier and slows down the uptake. Our study represents the first attempt to systematically describe how the swelling state of the hydrogel and other leading physical interaction parameters determine the encapsulation kinetics and the final equilibrium distribution of polar molecular cargo.
Collapse
Affiliation(s)
- Arturo Moncho-Jordá
- Instituto Carlos I de Física Teórica y Computacional, Facultad de Ciencias, Universidad de Granada , Avenida Fuentenueva S/N , 18071 Granada , Spain
- Departamento de Física Aplicada, Facultad de Ciencias , Universidad de Granada , Avenida Fuentenueva S/N , 18071 Granada , Spain
| | - Alicia Germán-Bellod
- Departamento de Física Aplicada, Facultad de Ciencias , Universidad de Granada , Avenida Fuentenueva S/N , 18071 Granada , Spain
| | | | | | - Joachim Dzubiella
- Research Group for Simulations of Energy Materials , Helmholtz-Zentrum Berlin für Materialien und Energie , Hahn-Meitner-Platz 1 , D-14109 Berlin , Germany
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg , Hermann-Herder Straße 3 , D-79104 Freiburg , Germany
| |
Collapse
|
22
|
Landsgesell J, Nová L, Rud O, Uhlík F, Sean D, Hebbeker P, Holm C, Košovan P. Simulations of ionization equilibria in weak polyelectrolyte solutions and gels. SOFT MATTER 2019; 15:1155-1185. [PMID: 30706070 DOI: 10.1039/c8sm02085j] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This article recapitulates the state of the art regarding simulations of ionization equilibria of weak polyelectrolyte solutions and gels. We start out by reviewing the essential thermodynamics of ionization and show how the weak polyelectrolyte ionization differs from the ionization of simple weak acids and bases. Next, we describe simulation methods for ionization reactions, focusing on two methods: the constant-pH ensemble and the reaction ensemble. After discussing the advantages and limitations of both methods, we review the existing simulation literature. We discuss coarse-grained simulations of weak polyelectrolytes with respect to ionization equilibria, conformational properties, and the effects of salt, both in good and poor solvent conditions. This is followed by a discussion of branched star-like weak polyelectrolytes and weak polyelectrolyte gels. At the end we touch upon the interactions of weak polyelectrolytes with other polymers, surfaces, nanoparticles and proteins. Although proteins are an important class of weak polyelectrolytes, we explicitly exclude simulations of protein ionization equilibria, unless they involve protein-polyelectrolyte interactions. Finally, we try to identify gaps and open problems in the existing simulation literature, and propose challenges for future development.
Collapse
Affiliation(s)
- Jonas Landsgesell
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, Stuttgart, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Boubeta FM, Soler-Illia GJAA, Tagliazucchi M. Electrostatically Driven Protein Adsorption: Charge Patches versus Charge Regulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15727-15738. [PMID: 30451508 DOI: 10.1021/acs.langmuir.8b03411] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The mechanisms of electrostatically driven adsorption of proteins on charged surfaces are studied with a new theoretical framework. The acid-base behavior, charge distribution, and electrostatic contributions to the thermodynamic properties of the proteins are modeled in the presence of a charged surface. The method is validated against experimental titration curves and apparent p Kas. The theory predicts that electrostatic interactions favor the adsorption of proteins at their isoelectric points on charged surfaces despite the fact that the protein has no net charge in solution. Two known mechanisms explain adsorption under these conditions: (i) charge regulation (the charge of the protein changes due to the presence of the surface) and (ii) charge patches (the protein orients to place charged amino acids near opposite surface charges). This work shows that both mechanisms contribute to adsorption at low ionic strengths, whereas only the charge-patch mechanism operates at high ionic strength. Interestingly, the contribution of charge regulation is insensitive to protein orientation under all conditions, which validates the use of constant-charge simulations to determine the most stable orientation of adsorbed proteins. The present study also shows that the charged surface can induce large shifts in the apparent p Kas of individual amino acids in adsorbed proteins. Our conclusions are valid for all proteins studied in this work (lysozyme, α-amylase, ribonuclease A, and β-lactoglobulin), as well as for proteins that are not isoelectric but have instead a net charge in solution of the same sign as the surface charge, i.e. the problem of protein adsorption on the "wrong side" of the isoelectric point.
Collapse
Affiliation(s)
| | - G J A A Soler-Illia
- Instituto de Nanosistemas , Universidad Nacional de General San Martín , Avenida 25 de Mayo y Francia , 1650 San Martín , Argentina
| | | |
Collapse
|
24
|
Latza VM, Rodriguez-Loureiro I, Fragneto G, Schneck E. End Point Versus Backbone Specificity Governs Characteristics of Antibody Binding to Poly(ethylene glycol) Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13946-13955. [PMID: 30354149 DOI: 10.1021/acs.langmuir.8b02774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
End-grafted poly(ethylene glycol) (PEG) brushes are widely used in order to suppress undesired protein adsorption to surfaces exposed to blood or other biological fluids. The specific adsorption of antibodies (Abs) to PEG brushes associated with PEG's antigenicity is drawing increasing attention because it can affect clinical applications. Here, the adsorption to PEG brushes of two Ab types, specifically binding the polymer backbone and the polymer endpoints, is structurally characterized by neutron reflectometry. The measurements yield volume fraction profiles of PEG and of the adsorbed Abs with sub-nanometer resolution perpendicular to the surface. For all brush parameters in terms of grafting density and polymerization degree, the Ab profiles clearly differ between backbone binders and endpoint binders. The adsorbed Ab amount per unit area is substantial for both Ab types and for all brush parameters investigated, even for dense brushes, which impose a considerable osmotic barrier to Ab insertion. The results therefore indicate that variation of brush parameters alone is insufficient to prevent undesired Ab adsorption. Instead, our work motivates further efforts in the search for nonantigenic brush chemistry.
Collapse
Affiliation(s)
- Victoria M Latza
- Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | | | - Giovanna Fragneto
- Institut Laue-Langevin , 71 Avenue des Martyrs , 38042 Grenoble Cedex 9 , France
| | - Emanuel Schneck
- Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| |
Collapse
|
25
|
Levin A, Czeslik C. Interaction of calmodulin with poly(acrylic acid) brushes: Effects of high pressure, pH-value and ligand binding. Colloids Surf B Biointerfaces 2018; 171:478-484. [DOI: 10.1016/j.colsurfb.2018.07.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022]
|
26
|
Ran Q, Xu X, Dey P, Yu S, Lu Y, Dzubiella J, Haag R, Ballauff M. Interaction of human serum albumin with dendritic polyglycerol sulfate: Rationalizing the thermodynamics of binding. J Chem Phys 2018; 149:163324. [DOI: 10.1063/1.5030601] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Qidi Ran
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- Institute of Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Multifunctional Biomaterials for Medicine, Helmholtz Virtual Institute, Kantstr. 55, 14513 Teltow-Seehof, Germany
| | - Xiao Xu
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, 210094 Nanjing, People’s Republic of China
| | - Pradip Dey
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Shun Yu
- Institute of Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany
| | - Yan Lu
- Institute of Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Joachim Dzubiella
- Institute of Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Multifunctional Biomaterials for Medicine, Helmholtz Virtual Institute, Kantstr. 55, 14513 Teltow-Seehof, Germany
- Physikalisches Institut, Albert-Ludwigs-Universität, 79104 Freiburg, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- Multifunctional Biomaterials for Medicine, Helmholtz Virtual Institute, Kantstr. 55, 14513 Teltow-Seehof, Germany
| | - Matthias Ballauff
- Institute of Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Multifunctional Biomaterials for Medicine, Helmholtz Virtual Institute, Kantstr. 55, 14513 Teltow-Seehof, Germany
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany
| |
Collapse
|
27
|
Truzzolillo D, Sennato S, Sarti S, Casciardi S, Bazzoni C, Bordi F. Overcharging and reentrant condensation of thermoresponsive ionic microgels. SOFT MATTER 2018; 14:4110-4125. [PMID: 29664092 PMCID: PMC5968447 DOI: 10.1039/c7sm02357j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We investigated the complexation of thermoresponsive anionic poly(N-isopropylacrylamide) (PNiPAM) microgels and cationic ε-polylysine (ε-PLL) chains. By combining electrophoresis, light scattering, transmission electron microscopy (TEM) and dielectric spectroscopy (DS) we studied the adsorption of ε-PLL onto microgel networks and its effect on the stability of suspensions. We show that the volume phase transition (VPT) of microgels triggers a large polyion adsorption. Two interesting phenomena with unique features occur: a temperature-dependent microgel overcharging and a complex reentrant condensation. The latter may occur at fixed polyion concentration, when temperature is raised above the VPT of microgels, or by increasing the number density of polycations at fixed temperature. TEM and DS measurements unambiguously show that short PLL chains adsorb onto microgels and act as electrostatic glue above the VPT. By performing thermal cycles, we further show that polyion-induced clustering is a quasi-reversible process: within the time of our experiments large clusters form above the VPT and partially re-dissolve as the mixtures are cooled down. Finally we give a proof that the observed phenomenology is purely electrostatic in nature: an increase of the ionic strength gives rise to polyion desorption from the microgel outer shell.
Collapse
Affiliation(s)
- Domenico Truzzolillo
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier , 4 F-34095 Montpellier , France .
| | - Simona Sennato
- CNR-ISC UOS Roma, c/o Dipartimento di Fisica, Sapienza Università di Roma , P.le A. Moro 2 , 00185 Roma , Italy
| | - Stefano Sarti
- Dipartimento di Fisica, Sapienza Università di Roma , P.zzle A. Moro 2 , 00185 Roma , Italy .
| | - Stefano Casciardi
- National Institute for Insurance against Accidents at Work (INAIL Research), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene , Roma , Italy
| | - Chiara Bazzoni
- Dipartimento di Fisica, Sapienza Università di Roma , P.zzle A. Moro 2 , 00185 Roma , Italy .
| | - Federico Bordi
- CNR-ISC UOS Roma, c/o Dipartimento di Fisica, Sapienza Università di Roma , P.le A. Moro 2 , 00185 Roma , Italy
- Dipartimento di Fisica, Sapienza Università di Roma , P.zzle A. Moro 2 , 00185 Roma , Italy .
| |
Collapse
|
28
|
Bratek-Skicki A, Eloy P, Morga M, Dupont-Gillain C. Reversible Protein Adsorption on Mixed PEO/PAA Polymer Brushes: Role of Ionic Strength and PEO Content. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3037-3048. [PMID: 29406751 DOI: 10.1021/acs.langmuir.7b04179] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Proteins at interfaces are a key for many applications in the biomedical field, in biotechnologies, in biocatalysis, in food industry, etc. The development of surface layers that allow to control and manipulate proteins is thus highly desired. In previous works, we have shown that mixed polymer brushes combining the protein-repellent properties of poly(ethylene oxide) (PEO) and the stimuli-responsive adsorption behavior of poly(acrylic acid) (PAA) could be synthesized and used to achieve switchable protein adsorption. With the present work, we bring more insight into the rational design of such smart thin films by unravelling the role of PEO on the adsorption/desorption of proteins. The PEO content of the mixed PEO/PAA brushes was regulated, on the one hand, by using PEO with different molar masses and, on the other hand, by varying the ratio of PEO and PAA in the solutions used to synthesize the brushes. The influence of ionic strength on the protein adsorption behavior was also further examined. The behavior of three proteins-human serum albumin, lysozyme, and human fibrinogen, which have very different size, shape, and isoelectric point-was investigated. X-ray photoelectron spectroscopy, quartz crystal microbalance, atomic force microscopy, and streaming potential measurements were used to characterize the mixed polymer brushes and, in particular, to estimate the fraction of each polymer within the brushes. Protein adsorption and desorption conditions were selected based on previous studies. While brushes with a lower PEO content allowed the higher protein adsorption to occur, fully reversible adsorption could only be achieved when the PEO surface density was at least 25 PEO units per nm2. Taken together, the results increase the ability to finely tune protein adsorption, especially with temporal control. This opens up possibilities of applications in biosensor design, separation technologies, nanotransport, etc.
Collapse
Affiliation(s)
- Anna Bratek-Skicki
- Institute of Condensed Matter and Nanosciences , Université catholique de Louvain , Place Louis Pasteur (L4.01.10) , 1348 Louvain-la-Neuve , Belgium
- Jerzy Haber Institute of Catalysis and Surface Chemistry , Polish Academy of Sciences , Niezapominajek 8 , PL30239 Krakow , Poland
| | - Pierre Eloy
- Institute of Condensed Matter and Nanosciences , Université catholique de Louvain , Place Louis Pasteur (L4.01.10) , 1348 Louvain-la-Neuve , Belgium
| | - Maria Morga
- Jerzy Haber Institute of Catalysis and Surface Chemistry , Polish Academy of Sciences , Niezapominajek 8 , PL30239 Krakow , Poland
| | - Christine Dupont-Gillain
- Institute of Condensed Matter and Nanosciences , Université catholique de Louvain , Place Louis Pasteur (L4.01.10) , 1348 Louvain-la-Neuve , Belgium
| |
Collapse
|
29
|
Pérez-Mas L, Martín-Molina A, Quesada-Pérez M, Moncho-Jordá A. Maximizing the absorption of small cosolutes inside neutral hydrogels: steric exclusion versus hydrophobic adhesion. Phys Chem Chem Phys 2018; 20:2814-2825. [PMID: 29323684 DOI: 10.1039/c7cp07679g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this work the equilibrium absorption of nanometric cosolutes (which could represent drugs, reactants, small globular proteins and other kind of biomacromolecules) inside neutral hydrogels is studied. We specially focus on exploring, for different swelling states, the competition between the steric exclusion induced by the cross-linked polymer network constituting the hydrogel, and the solvent-induced short-range hydrophobic attraction between the polymer chains and the cosolute particle. For this purpose, the cosolute partition coefficient is calculated by means of coarse-grained grand canonical Monte Carlo simulations, and the results are compared to theoretical predictions based on the calculation of the excluded and binding volume around the polymer chains. For small hydrophobic attractions or large cosolute sizes, the steric repulsion dominates, and the partition coefficient decreases monotonically with the polymer volume fraction, ϕm. However, for large enough hydrophobic attraction strength, the interplay between hydrophobic adhesion and the steric exclusion leads to a maximum in the partition coefficient at certain intermediate polymer density. Good qualitative and quantitative agreement is achieved between simulation results and theoretical predictions in the limit of small ϕm, pointing out the importance of geometrical aspects of the cross-linked polymer network, even for hydrogels in the swollen state. In addition, the theory is able to predict analytically the onset of the maximum formation in terms of the details of the cosolute-monomer pair interaction, in good agreement with simulations too. Finally, the effect of the many-body attractions between the cosolute and multiple polymer chains is quantified. The results clearly show that these many-body attractions play a very relevant role determining the cosolute binding, enhancing its absorption in more than one order of magnitude.
Collapse
Affiliation(s)
- Luis Pérez-Mas
- Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, Avenida Fuentenueva S/N, 18001 Granada, Spain
| | | | | | | |
Collapse
|
30
|
Lošdorfer BoŽič A. From discrete to continuous description of spherical surface charge distributions. SOFT MATTER 2018; 14:1149-1161. [PMID: 29345714 DOI: 10.1039/c7sm02207g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The importance of electrostatic interactions in soft matter and biological systems can often be traced to non-uniform charge effects, which are commonly described using a multipole expansion of the corresponding charge distribution. The standard approach when extracting the charge distribution of a given system is to treat the constituent charges as points. This can, however, lead to an overestimation of multipole moments of high order, such as dipole, quadrupole, and higher moments. Focusing on distributions of charges located on a spherical surface - characteristic of numerous biological macromolecules, such as globular proteins and viral capsids, as well as of inverse patchy colloids - we develop a novel way of representing spherical surface charge distributions based on the von Mises-Fisher distribution. This approach takes into account the finite spatial extension of individual charges, and leads to a simple yet powerful way of describing surface charge distributions and their multipole expansions. In this manner, we analyze charge distributions and the derived multipole moments of a number of different spherical configurations of identical charges with various degrees of symmetry. We show how the number of charges, their size, and the geometry of their configuration influence the behavior and relative importance of multipole magnitudes of different order. Importantly, we clearly demonstrate how neglecting the effect of charge size leads to an overestimation of high-order multipoles. The results of our work can be applied to construct analytical models of electrostatic interactions and multipole expansion of charged particles in diverse soft matter and biological systems.
Collapse
|
31
|
Andersson M, Hansson P. Binding of Lysozyme to Spherical Poly(styrenesulfonate) Gels. Gels 2018; 4:E9. [PMID: 30674786 PMCID: PMC6318605 DOI: 10.3390/gels4010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/30/2017] [Accepted: 01/10/2018] [Indexed: 11/16/2022] Open
Abstract
Polyelectrolyte gels are useful as carriers of proteins and other biomacromolecules in, e.g., drug delivery. The rational design of such systems requires knowledge about how the binding and release are affected by electrostatic and hydrophobic interactions between the components. To this end we have investigated the uptake of lysozyme by weakly crosslinked spherical poly(styrenesulfonate) (PSS) microgels and macrogels by means of micromanipulator assisted light microscopy and small angle X-ray scattering (SAXS) in an aqueous environment. The results show that the binding process is an order of magnitude slower than for cytochrome c and for lysozyme binding to sodium polyacrylate gels under the same conditions. This is attributed to the formation of very dense protein-rich shells in the outer layers of the microgels with low permeability to the protein. The shells in macrogels contain 60 wt % water and nearly charge stoichiometric amounts of lysozyme and PSS in the form of dense complexes of radius 8 nm comprising 30⁻60 lysozyme molecules. With support from kinetic modelling results we propose that the rate of protein binding and the relaxation rate of the microgel are controlled by the protein mass transport through the shell, which is strongly affected by hydrophobic and electrostatic interactions. The mechanism explains, in turn, an observed dependence of the diffusion rate on the apparent degree of crosslinking of the networks.
Collapse
Affiliation(s)
- Martin Andersson
- Department of Pharmacy, Uppsala University, Box 580, SE-75123 Uppsala, Sweden.
| | - Per Hansson
- Department of Pharmacy, Uppsala University, Box 580, SE-75123 Uppsala, Sweden.
| |
Collapse
|
32
|
Xu X, Ran Q, Dey P, Nikam R, Haag R, Ballauff M, Dzubiella J. Counterion-Release Entropy Governs the Inhibition of Serum Proteins by Polyelectrolyte Drugs. Biomacromolecules 2018; 19:409-416. [PMID: 29268015 DOI: 10.1021/acs.biomac.7b01499] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dendritic polyelectrolytes constitute high potential drugs and carrier systems for biomedical purposes. Still, their biomolecular interaction modes, in particular those determining the binding affinity to proteins, have not been rationalized. We study the interaction of the drug candidate dendritic polyglycerol sulfate (dPGS) with serum proteins using isothermal titration calorimetry (ITC) interpreted and complemented with molecular computer simulations. Lysozyme is first studied as a well-defined model protein to verify theoretical concepts, which are then applied to the important cell adhesion protein family of selectins. We demonstrate that the driving force of the strong complexation, leading to a distinct protein corona, originates mainly from the release of only a few condensed counterions from the dPGS upon binding. The binding constant shows a surprisingly weak dependence on dPGS size (and bare charge) which can be understood by colloidal charge-renormalization effects and by the fact that the magnitude of the dominating counterion-release mechanism almost exclusively depends on the interfacial charge structure of the protein-specific binding patch. Our findings explain the high selectivity of P- and L-selectins over E-selectin for dPGS to act as a highly anti-inflammatory drug. The entire analysis demonstrates that the interaction of proteins with charged polymeric drugs can be predicted by simulations with unprecedented accuracy. Thus, our results open new perspectives for the rational design of charged polymeric drugs and carrier systems.
Collapse
Affiliation(s)
- Xiao Xu
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin , Hahn-Meitner-Platz 1, 14109 Berlin, Germany.,Institut für Physik, Humboldt-Universität zu Berlin , Newtonstr. 15, 12489 Berlin, Germany
| | - Qidi Ran
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin , Hahn-Meitner-Platz 1, 14109 Berlin, Germany.,Multifunctional Biomaterials for Medicine, Helmholtz Virtual Institute , Kantstrasse 55, 14513 Teltow-Seehof, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Pradip Dey
- Institut für Chemie und Biochemie, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany.,Polymer Science Unit, Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road, 700032 Kolkata, India
| | - Rohit Nikam
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin , Hahn-Meitner-Platz 1, 14109 Berlin, Germany.,Institut für Physik, Humboldt-Universität zu Berlin , Newtonstr. 15, 12489 Berlin, Germany
| | - Rainer Haag
- Multifunctional Biomaterials for Medicine, Helmholtz Virtual Institute , Kantstrasse 55, 14513 Teltow-Seehof, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Matthias Ballauff
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin , Hahn-Meitner-Platz 1, 14109 Berlin, Germany.,Institut für Physik, Humboldt-Universität zu Berlin , Newtonstr. 15, 12489 Berlin, Germany.,Multifunctional Biomaterials for Medicine, Helmholtz Virtual Institute , Kantstrasse 55, 14513 Teltow-Seehof, Germany
| | - Joachim Dzubiella
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin , Hahn-Meitner-Platz 1, 14109 Berlin, Germany.,Institut für Physik, Humboldt-Universität zu Berlin , Newtonstr. 15, 12489 Berlin, Germany.,Multifunctional Biomaterials for Medicine, Helmholtz Virtual Institute , Kantstrasse 55, 14513 Teltow-Seehof, Germany
| |
Collapse
|
33
|
Cheng S, Stevens MJ, Grest GS. Ordering nanoparticles with polymer brushes. J Chem Phys 2017; 147:224901. [DOI: 10.1063/1.5006048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Shengfeng Cheng
- Department of Physics, Center for Soft Matter and Biological Physics, and Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Mark J. Stevens
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Gary S. Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| |
Collapse
|
34
|
Lošdorfer Božič A, Podgornik R. pH Dependence of Charge Multipole Moments in Proteins. Biophys J 2017; 113:1454-1465. [PMID: 28978439 DOI: 10.1016/j.bpj.2017.08.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 11/26/2022] Open
Abstract
Electrostatic interactions play a fundamental role in the structure and function of proteins. Due to ionizable amino acid residues present on the solvent-exposed surfaces of proteins, the protein charge is not constant but varies with the changes in the environment-most notably, the pH of the surrounding solution. We study the effects of pH on the charge of four globular proteins by expanding their surface charge distributions in terms of multipoles. The detailed representation of the charges on the proteins is in this way replaced by the magnitudes and orientations of the multipole moments of varying order. Focusing on the three lowest-order multipoles-the total charge, dipole, and quadrupole moment-we show that the value of pH influences not only their magnitudes, but more notably and importantly also the spatial orientation of their principal axes. Our findings imply important consequences for the study of protein-protein interactions and the assembly of both proteinaceous shells and patchy colloids with dissociable charge groups.
Collapse
Affiliation(s)
| | - Rudolf Podgornik
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia; Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
35
|
Xu X, Ran Q, Haag R, Ballauff M, Dzubiella J. Charged Dendrimers Revisited: Effective Charge and Surface Potential of Dendritic Polyglycerol Sulfate. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00742] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiao Xu
- Institut
für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Institut
für Physik, Humboldt-Universität zu Berlin, Newtonstr.
15, 12489 Berlin, Germany
- Multifunctional
Biomaterials for Medicine, Helmholtz Virtual Institute, Kantstr. 55, 14513 Teltow-Seehof, Germany
| | - Qidi Ran
- Institut
für Physik, Humboldt-Universität zu Berlin, Newtonstr.
15, 12489 Berlin, Germany
- Multifunctional
Biomaterials for Medicine, Helmholtz Virtual Institute, Kantstr. 55, 14513 Teltow-Seehof, Germany
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Rainer Haag
- Multifunctional
Biomaterials for Medicine, Helmholtz Virtual Institute, Kantstr. 55, 14513 Teltow-Seehof, Germany
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Matthias Ballauff
- Institut
für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Institut
für Physik, Humboldt-Universität zu Berlin, Newtonstr.
15, 12489 Berlin, Germany
- Multifunctional
Biomaterials for Medicine, Helmholtz Virtual Institute, Kantstr. 55, 14513 Teltow-Seehof, Germany
| | - Joachim Dzubiella
- Institut
für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Institut
für Physik, Humboldt-Universität zu Berlin, Newtonstr.
15, 12489 Berlin, Germany
- Multifunctional
Biomaterials for Medicine, Helmholtz Virtual Institute, Kantstr. 55, 14513 Teltow-Seehof, Germany
| |
Collapse
|
36
|
Adroher-Benítez I, Moncho-Jordá A, Dzubiella J. Sorption and Spatial Distribution of Protein Globules in Charged Hydrogel Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4567-4577. [PMID: 28431468 DOI: 10.1021/acs.langmuir.7b00356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We have theoretically studied the uptake of a nonuniformly charged biomolecule suitable for representing a globular protein or a drug by a charged hydrogel carrier in the presence of a 1:1 electrolyte. On the basis of the analysis of a physical interaction Hamiltonian including monopolar, dipolar, and Born (self-energy) contributions derived from linear electrostatic theory of the unperturbed homogeneous hydrogel, we have identified five different sorption states of the system, from complete repulsion of the molecule to its full sorption deep inside the hydrogel, passing through metastable and stable surface adsorption states. The results are summarized in state diagrams that also explore the effects of varying the electrolyte concentration, the sign of the net electric charge of the biomolecule, and the role of including excluded-volume (steric) or hydrophobic biomolecule-hydrogel interactions. We show that the dipole moment of the biomolecule is a key parameter controlling the spatial distribution of the globules. In particular, biomolecules with a large dipole moment tend to be adsorbed at the external surface of the hydrogel, even if like-charged, whereas uniformly charged biomolecules tend to partition toward the internal core of an oppositely charged hydrogel. Hydrophobic attraction shifts the states toward the internal sorption of the biomolecule, whereas steric repulsion promotes surface adsorption for oppositely charged biomolecules or for the total exclusion of likely charged ones. Our results establish a guideline for the spatial partitioning of proteins and drugs in hydrogel carriers, tunable by the hydrogel charge, pH, and salt concentration.
Collapse
Affiliation(s)
| | | | - Joachim Dzubiella
- Institut für Physik, Humboldt-Universität zu Berlin , Newtonstr. 15, D-12489 Berlin, Germany
- Institut für Weiche Materie and Funktionale Materialen, Helmholtz-Zentrum Berlin , Hahn-Meitner Platz 1, D-14109 Berlin, Germany
- Multifunctional Biomaterials for Medicine, Helmholtz Virtual Institute , 14513 Teltow, Germany
| |
Collapse
|
37
|
Wang W, Li L, Henzler K, Lu Y, Wang J, Han H, Tian Y, Wang Y, Zhou Z, Lotze G, Narayanan T, Ballauff M, Guo X. Protein Immobilization onto Cationic Spherical Polyelectrolyte Brushes Studied by Small Angle X-ray Scattering. Biomacromolecules 2017; 18:1574-1581. [PMID: 28398743 DOI: 10.1021/acs.biomac.7b00164] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The immobilization of bovine serum albumins (BSA) onto cationic spherical polyelectrolyte brushes (SPB) consisting of a solid polystyrene (PS) core and a densely grafted poly(2-aminoethyl methacrylate hydrochloride) (PAEMH) shell was studied by small-angle X-ray scattering (SAXS). The observed dynamics of adsorption of BSA onto SPB by time-resolved SAXS can be divided into two stages. In the first stage (tens of milliseconds), the added proteins as in-between bridge instantaneously caused the aggregation of SPB. Then BSA penetrated into the brush layer driven by electrostatic attractions, and reached equilibrium in the second stage (tens of seconds). The amount of BSA immobilized onto brush layer reached the maximum when pH was increased to about 6.1 and BSA concentration to 10 g/L. The cationic SPB were confirmed to provide stronger adsorption capacity for BSA compared to anionic ones.
Collapse
Affiliation(s)
- Weihua Wang
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology , Shanghai 200237, People's Republic of China.,Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Li Li
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Katja Henzler
- Paul Scherer Institute , Laboratory for Synchrotron Radiation and Femtochemistry, 5232 Villigen PSI, Switzerland
| | - Yan Lu
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Hahn-Meitner-Platz 1, 14109 Berlin, Germany.,Institut für Phzsik, Humboldt-Universität zu Berlin , 12489 Berlin, Germany
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Haoya Han
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Yuchuan Tian
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Yunwei Wang
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Zhiming Zhou
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Gudrun Lotze
- European Synchrotron Radiation Facility , F-38043, Grenoble, France
| | | | - Matthias Ballauff
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Hahn-Meitner-Platz 1, 14109 Berlin, Germany.,Institut für Phzsik, Humboldt-Universität zu Berlin , 12489 Berlin, Germany
| | - Xuhong Guo
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology , Shanghai 200237, People's Republic of China.,Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University , Xinjiang 832000, People's Republic of China
| |
Collapse
|
38
|
Bianchi E, Capone B, Coluzza I, Rovigatti L, van Oostrum PDJ. Limiting the valence: advancements and new perspectives on patchy colloids, soft functionalized nanoparticles and biomolecules. Phys Chem Chem Phys 2017; 19:19847-19868. [DOI: 10.1039/c7cp03149a] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Artistic representation of limited valance units consisting of a soft core (in blue) and a small number of flexible bonding patches (in orange).
Collapse
Affiliation(s)
- Emanuela Bianchi
- Faculty of Physics
- University of Vienna
- A-1090 Vienna
- Austria
- Institute for Theoretical Physics
| | - Barbara Capone
- Faculty of Physics
- University of Vienna
- A-1090 Vienna
- Austria
- Dipartimento di Scienze
| | - Ivan Coluzza
- Faculty of Physics
- University of Vienna
- A-1090 Vienna
- Austria
| | - Lorenzo Rovigatti
- Faculty of Physics
- University of Vienna
- A-1090 Vienna
- Austria
- Rudolf Peierls Centre for Theoretical Physics
| | - Peter D. J. van Oostrum
- Department of Nanobiotechnology
- Institute for Biologically Inspired Materials
- University of Natural Resources and Life Sciences
- A-1190 Vienna
- Austria
| |
Collapse
|