1
|
Hurtado C, Andreoli T, Le Brun AP, MacGregor M, Darwish N, Ciampi S. Galinstan Liquid Metal Electrical Contacts for Monolayer-Modified Silicon Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:201-210. [PMID: 38101331 DOI: 10.1021/acs.langmuir.3c02340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Galinstan is the brand name for a low-melting gallium-based alloy, which is a promising nontoxic alternative to mercury, the only elemental metal found in the liquid state at room temperature. Liquid alloys such as Galinstan have found applications as electromechanical actuators, sensors, and soft contacts for molecular electronics. In this work, we validate the scope of Galinstan top contacts to probe the electrical characteristics of Schottky junctions made on Si(111) and Si(211) crystals modified with Si-C-bound organic monolayers. We show that the surface-to-volume ratio of the Galinstan drop used as a macroscopic contact defines the junction stability. Further, we explore chemical strategies to increase Galinstan surface tension to obtain control over the junction area, hence improving the repeatability and reproducibility of current-voltage (I-V) measurements. We explore Galinstan top contacts as a means to monitor changes in rectification ratios caused by surface reactions and use these data, most notably the static junction leakage, toward making qualitative predictions on the DC outputs recorded when these semiconductor systems are incorporated in Schottky-based triboelectric nanogenerators. We found that the introduction of iron particles leads to poor data repeatability for capacitance-voltage (C-V) measurements but has only a small negative impact in a dynamic current measurement (I-V).
Collapse
Affiliation(s)
- Carlos Hurtado
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Tony Andreoli
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales 2234, Australia
| | - Melanie MacGregor
- Flinders Institute for Nanoscale Science and Technology, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
2
|
Meng Y, Chen F, Wu C, Krause S, Wang J, Zhang DW. Light-Addressable Electrochemical Sensors toward Spatially Resolved Biosensing and Imaging Applications. ACS Sens 2022; 7:1791-1807. [PMID: 35762514 DOI: 10.1021/acssensors.2c00940] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The light-addressable electrochemical sensor (LAES) is a recently emerged bioanalysis technique combining electrochemistry with the photoelectric effect in a semiconductor. In an LAES, a semiconductor substrate is illuminated locally to generate charge carriers in a well-defined area, thereby confining the electrochemical process to a target site. Benefiting from the unique light addressability, an LAES can not only detect multiple analytes in parallel within a single sensor plate but also act as a bio(chemical) imaging sensor to visualize the two-dimensional distribution of specific analytes. An LAES usually has three working modes: a potentiometric mode using light-addressable potentiometric sensors (LAPS) and an impedance mode using scanning photoinduced impedance microscopy (SPIM), while an amperometric mode refers to light-addressable electrochemistry (LAE) and photoelectrochemical (PEC) sensing. In this review, we describe the detection principles of each mode of LAESs and the concept of light addressability. In addition, we highlight the recent progress and advance of LAESs in spatial resolution, sensor system design, multiplexed detection, and bio(chemical) imaging applications. An outlook on current research challenges and future prospects is also presented.
Collapse
Affiliation(s)
- Yao Meng
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fangming Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Steffi Krause
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Jian Wang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, 710061, China
| | - De-Wen Zhang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, 710061, China
| |
Collapse
|
3
|
Zhang S, Lyu X, Hurtado Torres C, Darwish N, Ciampi S. Non-Ideal Cyclic Voltammetry of Redox Monolayers on Silicon Electrodes: Peak Splitting is Caused by Heterogeneous Photocurrents and Not by Molecular Disorder. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:743-750. [PMID: 34989574 DOI: 10.1021/acs.langmuir.1c02723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the last three decades, research on redox-active monolayers has consolidated their importance as advanced functional material. For widespread monolayer systems, such as alkanethiols on gold, non-ideal multiple peaks in cyclic voltammetry are generally taken as indication of heterogeneous intermolecular interactions─namely, disorder in the monolayer. Our findings show that, contrary to metals, peak multiplicity of silicon photoelectrodes is not diagnostic of heterogeneous intermolecular microenvironments but is more likely caused by photocurrent being heterogeneous across the monolayer. This work is an important step toward understanding the cause of electrochemical non-idealities in semiconductor electrodes so that these can be prevented and the redox behavior of molecular monolayers, as photocatalytic systems, can be optimized.
Collapse
Affiliation(s)
- Song Zhang
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Xin Lyu
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Carlos Hurtado Torres
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
4
|
Light-Addressable Actuator-Sensor Platform for Monitoring and Manipulation of pH Gradients in Microfluidics: A Case Study with the Enzyme Penicillinase. BIOSENSORS-BASEL 2021; 11:bios11060171. [PMID: 34072213 PMCID: PMC8230332 DOI: 10.3390/bios11060171] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022]
Abstract
The feasibility of light-addressed detection and manipulation of pH gradients inside an electrochemical microfluidic cell was studied. Local pH changes, induced by a light-addressable electrode (LAE), were detected using a light-addressable potentiometric sensor (LAPS) with different measurement modes representing an actuator-sensor system. Biosensor functionality was examined depending on locally induced pH gradients with the help of the model enzyme penicillinase, which had been immobilized in the microfluidic channel. The surface morphology of the LAE and enzyme-functionalized LAPS was studied by scanning electron microscopy. Furthermore, the penicillin sensitivity of the LAPS inside the microfluidic channel was determined with regard to the analyte’s pH influence on the enzymatic reaction rate. In a final experiment, the LAE-controlled pH inhibition of the enzyme activity was monitored by the LAPS.
Collapse
|
5
|
Zhou B, Das A, Zhong M, Guo Q, Zhang DW, Hing KA, Sobrido AJ, Titirici MM, Krause S. Photoelectrochemical imaging system with high spatiotemporal resolution for visualizing dynamic cellular responses. Biosens Bioelectron 2021; 180:113121. [PMID: 33706156 DOI: 10.1016/j.bios.2021.113121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/20/2021] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
Photoelectrochemical imaging has great potential in the label-free investigation of cellular processes. Herein, we report a new fast photoelectrochemical imaging system (PEIS) for DC photocurrent imaging of live cells, which combines high speed with excellent lateral resolution and high photocurrent stability, which are all crucial for studying dynamic cellular processes. An analog micromirror was adopted to raster the sensor substrate, enabling high-speed imaging. α-Fe2O3 (hematite) thin films synthesized via electrodeposition were used as a robust substrate with high photocurrent and good spatial resolution. The capabilities of this system were demonstrated by monitoring cell responses to permeabilization with Triton X-100. The ability to carry out dynamic functional imaging of multiple cells simultaneously provides improved confidence in the data than could be achieved with the slower electrochemical single-cell imaging techniques described previously. When monitoring pH changes, the PEIS can achieve frame rates of 8 frames per second.
Collapse
Affiliation(s)
- Bo Zhou
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Anirban Das
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | - Muchun Zhong
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Qian Guo
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - De-Wen Zhang
- Institute of Medical Engineering, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Karin A Hing
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Ana Jorge Sobrido
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Maria-Magdalena Titirici
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, UK
| | - Steffi Krause
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
6
|
InGaN as a Substrate for AC Photoelectrochemical Imaging. SENSORS 2019; 19:s19204386. [PMID: 31614420 PMCID: PMC6832470 DOI: 10.3390/s19204386] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 01/07/2023]
Abstract
AC photoelectrochemical imaging at electrolyte–semiconductor interfaces provides spatially resolved information such as surface potentials, ion concentrations and electrical impedance. In this work, thin films of InGaN/GaN were used successfully for AC photoelectrochemical imaging, and experimentally shown to generate a considerable photocurrent under illumination with a 405 nm modulated diode laser at comparatively high frequencies and low applied DC potentials, making this a promising substrate for bioimaging applications. Linear sweep voltammetry showed negligible dark currents. The imaging capabilities of the sensor substrate were demonstrated with a model system and showed a lateral resolution of 7 microns.
Collapse
|
7
|
YALING Y, YI H. A Sensitive and Selective Method for Visual Chronometric Detection of Copper(II) Ions Using Clock Reaction. ANAL SCI 2019; 35:159-163. [DOI: 10.2116/analsci.18p345] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yue YALING
- School of National Defence Science & Technology, Southwest University of Science and Technology
| | - He YI
- School of National Defence Science & Technology, Southwest University of Science and Technology
| |
Collapse
|
8
|
Wu F, Campos I, Zhang DW, Krause S. Biological imaging using light-addressable potentiometric sensors and scanning photo-induced impedance microscopy. Proc Math Phys Eng Sci 2017; 473:20170130. [PMID: 28588418 DOI: 10.1098/rspa.2017.0130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/07/2017] [Indexed: 11/12/2022] Open
Abstract
Light-addressable potentiometric sensors (LAPS) and scanning photo-induced impedance microscopy (SPIM) use photocurrent measurements at electrolyte-insulator-semiconductor substrates for spatio-temporal imaging of electrical potentials and impedance. The techniques have been used for the interrogation of sensor arrays and the imaging of biological systems. Sensor applications range from the detection of different types of ions and the label-free detection of charged molecules such as DNA and proteins to enzyme-based biosensors. Imaging applications include the temporal imaging of extracellular potentials and dynamic concentration changes in microfluidic channels and the lateral imaging of cell surface charges and cell metabolism. This paper will investigate the current state of the art of the measurement technology with a focus on spatial and temporal resolution and review the biological applications, these techniques have been used for. An outlook on future developments in the field will be given.
Collapse
Affiliation(s)
- Fan Wu
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Inmaculada Campos
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.,Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona, Spain
| | - De-Wen Zhang
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.,Institute of Materials, China Academy of Engineering Physics, Jiangyou, 621908, Sichuan, People's Republic of China
| | - Steffi Krause
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|