1
|
Xiang H, Valandro SR, Hill EH. Layered silicate edge-linked perylene diimides: Synthesis, self-assembly and energy transfer. J Colloid Interface Sci 2023; 629:300-306. [PMID: 36155925 DOI: 10.1016/j.jcis.2022.09.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/02/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022]
Abstract
The control over intermolecular interactions between chromophores at nanomaterial interfaces is important for sensing and light-harvesting applications. To that aim, inorganic nanoparticles with anisotropic shape and surface chemistry can serve as useful supports for organic modification. Herein, novel asymmetric perylene diimides with aspartic acid and oleyl terminal groups were grafted to the edges of the layered silicate clay Laponite, a water-dispersible discoidal nanoparticle. The photophysical properties and solvent-dependent self-assembly of the nanoclay-grafted perylenes were investigated, revealing that the polarity of the terminating ligand dictates the aggregation behavior in aqueous solution, where increased water content generally led to the formation of perylene H-aggregates. The anionic basal surface of the nanoclay provided a binding site for a cationic fluorophore, leading to energy transfer from the face-bound donor to the edge-bound perylene acceptor. This study encourages further research on the use of functional ligands for the formation of organic-inorganic hybrids, particularly where inorganic template particles with specific surface chemistry can be exploited to study intermolecular interactions. Overall, these findings should advance further design and implementation of novel semiconducting ligands towards inorganic-organic hybrids, with potential applications in sensing and energy harvesting.
Collapse
Affiliation(s)
- Hongxiao Xiang
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Silvano R Valandro
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; The Hamburg Center for Ultrafast Imaging (CUI), Luruper Chausee 149, 22761 Hamburg, Germany
| | - Eric H Hill
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; The Hamburg Center for Ultrafast Imaging (CUI), Luruper Chausee 149, 22761 Hamburg, Germany.
| |
Collapse
|
2
|
Yoshida Y, Shimada T, Ishida T, Takagi S. Effects of the Surface Charge Density of Clay Minerals on Surface-Fixation Induced Emission of Acridinium Derivatives. ACS OMEGA 2021; 6:21702-21708. [PMID: 34471772 PMCID: PMC8388081 DOI: 10.1021/acsomega.1c03157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Surface-fixation induced emission is a fluorescence enhancement phenomenon, which is expressed when dye molecules satisfy a specific adsorption condition on the anionic clay surface. The photophysical behaviors of two types of cationic acridinium derivatives [10-methylacridinium perchlorate (Acr+) and 10-methyl-9-phenylacridinium perchlorate (PhAcr+)] on the synthetic saponites with different anionic charge densities were investigated. Under the suitable conditions, the fluorescence quantum yield (Φf) of PhAcr+ was enhanced 22.3 times by the complex formation with saponite compared to that in water without saponite. As the inter-negative charge distance of saponite increased from 1.04 to 1.54 nm, the Φf of PhAcr+ increased 1.25 times. In addition, the increase in the negative charge distance caused the increase in the integral value of the extinction coefficient and the radiative deactivation rate constant (k f) and the decrease in the nonradiative deactivation rate constant. It should be noted that the 2.3 times increase in k f is the highest among the reported values for the effect of clay. From these results, it was concluded that the photophysical properties of dyes can be modulated by changing the charge density of clay minerals.
Collapse
Affiliation(s)
- Yuma Yoshida
- Department
of Applied Chemistry for Environment, Graduate School of Urban Environmental
Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji-shi, Tokyo 192-0397, Japan
| | - Tetsuya Shimada
- Department
of Applied Chemistry for Environment, Graduate School of Urban Environmental
Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji-shi, Tokyo 192-0397, Japan
| | - Tamao Ishida
- Department
of Applied Chemistry for Environment, Graduate School of Urban Environmental
Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji-shi, Tokyo 192-0397, Japan
- Research
Center for Gold Chemistry, Tokyo Metropolitan
University, 1-1 Minami-ohsawa, Hachiohji-shi, Tokyo 192-0397, Japan
- Research
Center for Hydrogen Energy-based Society (ReHES), Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachiohji-shi, Tokyo 192-0397, Japan
| | - Shinsuke Takagi
- Department
of Applied Chemistry for Environment, Graduate School of Urban Environmental
Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji-shi, Tokyo 192-0397, Japan
- Research
Center for Hydrogen Energy-based Society (ReHES), Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachiohji-shi, Tokyo 192-0397, Japan
| |
Collapse
|
3
|
Zhai X, Ruan C, Shen J, Zheng C, Zhao X, Pan H, Lu WW. Clay-based nanocomposite hydrogel with attractive mechanical properties and sustained bioactive ion release for bone defect repair. J Mater Chem B 2021; 9:2394-2406. [PMID: 33625433 DOI: 10.1039/d1tb00184a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although clay-based nanocomposite hydrogels have been widely explored, their instability in hot water and saline solution inhibits their applications in biomedical engineering, and the exploration of clay-based nanocomposite hydrogels in bone defect repair is even less. In this work, we developed a stable clay-based nanocomposite hydrogel using 4-acryloylmorpholine as the monomer. After UV light illumination, the obtained poly(4-acryloylmorpholine) clay-based nanocomposite hydrogel (poly(4-acry)-clay nanocomposite hydrogel) exhibits excellent mechanical properties due to the hydrogen bond interactions between the poly(4-acryloylmorpholine) chains and the physical crosslinking effect of the nanoclay. Besides good biocompatibility, the sustainable release of intrinsic Mg2+ and Si4+ from the poly(4-acry)-clay nanocomposite hydrogel endows the system with excellent ability to promote the osteogenic differentiation of primary rat osteoblasts (ROBs) and can promote new bone formation effectively after implantation. We anticipate that these kinds of clay-based nanocomposite hydrogels with sustained release of bioactive ions will open a new avenue for the development of novel biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Xinyun Zhai
- Tianjin Key Laboratory for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Jie Shen
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Orthopaedic Research Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Chuping Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease Pharmacological Group, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Xiaoli Zhao
- Research Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Haobo Pan
- Research Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - William Weijia Lu
- Research Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. and Department of Orthopaedic and Traumatology, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China.
| |
Collapse
|
4
|
Silva GM, Silva KM, Silva CP, Gonçalves JM, Quina FH. Hybrid Pigments from Anthocyanin Analogues and Synthetic Clay Minerals. ACS OMEGA 2020; 5:26592-26600. [PMID: 33110987 PMCID: PMC7581255 DOI: 10.1021/acsomega.0c03354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Flavylium cations are synthetic analogues of anthocyanins, the natural plant pigments that are responsible for the majority of the red, blue, and purple colors of flowers, fruits, and leaves. Unlike anthocyanins, the properties and reactivity of flavylium cations can be manipulated by the nature and position of substituents on the flavylium cation chromophore. Currently, the most promising strategies for stabilizing the color of anthocyanins and flavylium cations appear to be to intercalate and/or adsorb them on solid surfaces and/or in confined spaces. We report here that hybrid pigments with improved thermal stability, fluorescence, and attractive colors are produced by the cation-exchange-mediated adsorption of flavylium cations (FL) on two synthetic clays, the mica-montmorillonite SYn-1, and the laponite SYnL-1. Compared to the FL/SYn-1 hybrid pigments, the FL/SYnL-1 pigments exhibited improved thermal stability as judged by color retention, better preferential adsorption of the cationic form of FL1 at neutral to mildly basic pH (pH 7-8), and lower susceptibility to color changes at pH 10. Although both clays adsorb the cationic form on their external surfaces, SYnL-1 gave more evidence of adsorption in the interlayer regions of the clay. This interlayer adsorption appears to be the contributing factor to the better properties of the FL/SYnL-1 hybrid pigments, pointing to this clay to be a promising inorganic matrix for the development of brightly colored, thermally more stable hybrid pigments based on cationic analogues of natural plant pigments.
Collapse
Affiliation(s)
- Gustavo
Thalmer M. Silva
- Instituto
de Química, Universidade de
São Paulo, Av. Lineu Prestes 748, Cidade
Universitária, São Paulo 05508-000, Brazil
| | - Karen Magno Silva
- Instituto
de Química, Universidade de
São Paulo, Av. Lineu Prestes 748, Cidade
Universitária, São Paulo 05508-000, Brazil
- Instituto
Federal de Educação, Ciência
e Tecnologia de São Paulo, Campus São Paulo, 01109-010 São Paulo, Brazil
| | - Cassio P. Silva
- Instituto
de Química, Universidade de
São Paulo, Av. Lineu Prestes 748, Cidade
Universitária, São Paulo 05508-000, Brazil
| | - Josué M. Gonçalves
- Instituto
de Química, Universidade de
São Paulo, Av. Lineu Prestes 748, Cidade
Universitária, São Paulo 05508-000, Brazil
| | - Frank H. Quina
- Instituto
de Química, Universidade de
São Paulo, Av. Lineu Prestes 748, Cidade
Universitária, São Paulo 05508-000, Brazil
| |
Collapse
|
5
|
Yoshida Y, Shimada T, Ishida T, Takagi S. Thermodynamic study of the adsorption of acridinium derivatives on the clay surface. RSC Adv 2020; 10:21360-21368. [PMID: 35518779 PMCID: PMC9054366 DOI: 10.1039/d0ra03158e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/17/2020] [Indexed: 12/03/2022] Open
Abstract
In this study, the adsorption behavior of mono-cationic acridinium derivatives on a synthetic clay mineral (Sumecton SA) was investigated. The acridinium derivatives were adsorbed on the clay surface without aggregation, as found from the changes in the absorption spectra of the acridinium derivatives with SSA and without SSA represented by two-component equilibrium systems of adsorbed and non-adsorbed components. Following the Langmuir isotherm analysis, the adsorption equilibrium constants and maximum adsorption amounts were determined for acridinium derivatives, and the Gibbs free energy change (ΔG) was calculated to be in the range of −33.8 to 40.0 kJ mol−1 from the adsorption equilibrium constants. These results indicated that the adsorption of acridinium derivatives on the clay surface was an exergonic reaction. Moreover, thermodynamic parameters such as enthalpy change (ΔH) and entropy change (ΔS) were obtained from the temperature effect experiments. For all acridinium derivatives, ΔH (from −7.82 to −26.0 kJ mol−1) and ΔS (0.047–0.088 kJ mol−1 K−1) were found to be negative and positive, respectively. It was suggested that not only electrostatic interactions, but also van der Waals forces and hydrophobic interactions played an important role in the adsorption of cationic aromatic molecules on the clay surface. Because these thermodynamic parameters showed a strong correlation with the molecular cross-sectional area of acridinium derivatives, it was suggested that the contribution of hydrophobic interactions became smaller as the molecular cross-sectional area became larger. Thermodynamic studies indicate that van der Waals and hydrophobic interactions contribute to the adsorption of mono-cationic acridinium derivatives on the clay surface.![]()
Collapse
Affiliation(s)
- Yuma Yoshida
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-ohsawa Hachioji-shi Tokyo 192-0397 Japan
| | - Tetsuya Shimada
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-ohsawa Hachioji-shi Tokyo 192-0397 Japan
| | - Tamao Ishida
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-ohsawa Hachioji-shi Tokyo 192-0397 Japan.,Research Center for Gold Chemistry, Tokyo Metropolitan University 1-1 Minami-ohsawa Hachiohji-shi Tokyo 192-0397 Japan.,Research Center for Hydrogen Energy-based Society (ReHES), Tokyo Metropolitan University 1-1 Minami-ohsawa Hachiohji-shi Tokyo 192-0397 Japan +81 42 677 2839
| | - Shinsuke Takagi
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-ohsawa Hachioji-shi Tokyo 192-0397 Japan.,Research Center for Hydrogen Energy-based Society (ReHES), Tokyo Metropolitan University 1-1 Minami-ohsawa Hachiohji-shi Tokyo 192-0397 Japan +81 42 677 2839
| |
Collapse
|
6
|
Fujimura T, Aoyama YH, Sasai R. Unique protonation behavior of cationic free-base porphyrins in the interlayer space of transparent solid films comprising layered α-zirconium phosphate. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Abstract
One of the important features of polymethine (cyanine) dyes is isomerization about one of C–C bonds of the polymethine chain. In this review, spectral properties of the isomers, photoisomer-ization and thermal back isomerization of carbocyanine dyes, mostly meso-substituted carbocy-anine dyes, are considered. meso-Alkyl-substituted thiacarbocyanine dyes are present in polar solvents mainly as cis isomers and, hence, exhibit no photoisomerization, whereas in nonpolar solvents, in which the dyes are in the trans form, photoisomerization takes place. In contrast, the meso-substituted dyes 3,3′-dimethyl-9-phenylthiacarbocyanine and 3,3′-diethyl-9-(2-hydroxy-4-methoxyphenyl)thiacarbocyanine occur as trans isomers and exhibit photoisomerization in both polar and nonpolar solvents. The behavior of these dyes may be ex-plained by the fact that the phenyl ring of the substituent in their molecules can be twisted at some angle, removing the substituent from the plane of the molecule and reducing its steric ef-fect on the conformation of the trans isomer. In some cases, photoisomerization of cis isomers of meso-substituted carbocyanine dyes is also observed (for some meso-alkyl-substituted dyes com-plexed with DNA and chondroitin-4-sulfate; for 3,3′-diethyl-9-methoxythiacarbocyanine in moderate polarity solvents). The cycle photoisomerization–thermal back isomerization of cya-nine dyes can be used in various systems of information storage and deserves further investiga-tion using modern research methods.
Collapse
|
8
|
Abstract
One of the important features of polymethine (cyanine) dyes is isomerization around one of C–C bonds of the polymethine chain. In this review, spectral properties of the isomers, photoisomerization and thermal back isomerization of carbocyanine dyes, mostly meso-substituted carbocyanine dyes, are considered. meso-Alkyl-substituted thiacarbocyanine dyes are present in polar solvents mainly as cis isomers and, hence, exhibit no photoisomerization, whereas in nonpolar solvents, in which the dyes are in the trans form, photoisomerization takes place. In contrast, the meso-substituted dyes 3,3′-dimethyl-9-phenylthiacarbocyanine and 3,3′-diethyl-9-(2-hydroxy-4-methoxyphenyl)thiacarbocyanine occur as trans isomers and exhibit photoisomerization in both polar and nonpolar solvents. The behavior of these dyes may be explained by the fact that the phenyl ring of the substituent in their molecules can be twisted at some angle, removing the substituent from the plane of the molecule and reducing its steric effect on the conformation of the trans isomer. In some cases, photoisomerization of cis isomers of meso-substituted carbocyanine dyes is also observed (for some meso-alkyl-substituted dyes complexed with DNA and chondroitin-4-sulfate; for 3,3′-diethyl-9-methoxythiacarbocyanine in moderate polarity solvents). The cycle photoisomerization–thermal back isomerization of cyanine dyes can be used in various systems of information storage and deserves further investigation using modern research methods.
Collapse
|
9
|
Bujdák J. The effects of layered nanoparticles and their properties on the molecular aggregation of organic dyes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2018. [DOI: 10.1016/j.jphotochemrev.2018.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
|