Seminaphthorhodafluor Derivatives Bridged Periodic Mesoporous Organosilicas for Detection of Cu
2.
J Fluoresc 2023;
33:327-337. [PMID:
36418616 DOI:
10.1007/s10895-022-03059-1]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/25/2022] [Indexed: 11/25/2022]
Abstract
Seminaphthorhodafluor (SNARF) Schiff base (SNARF-SB) bridged periodic mesoporous organosilicas (SSPMOs) with "turn-on" fluorescence enhancement for sensing Cu2+ were synthesized via a template-directed co-condensation method. Small-angle x-ray scattering (SAXS) patterns, high resolution transmission electron microscope (HRTEM) images, and N2 adsorption-desorption isotherms indicated the presence of mesoporous structure in the SSPMOs. FT-IR spectra and 29Si MAS NMR data confirmed the successful incorporation of bridged organic groups in the framework of SSPMOs. The luminous properties that SSPMOs had a selective response to Cu2+ were investigated by UV-Vis absorption spectroscopy and fluorescence spectroscopy. The limit of detection (LOD) was 5.1 × 10-7 M and binding stoichiometry was determined 1:1 between SNARF-SB and Cu2+. The fluorescence enhancement of SSPMOs towards Cu2+ was induced by ring-opening of the spirolactam in SNARF-SB in framework of SSPMOs, which was confirmed by FT-IR spectra of SNARF-SB with Cu2+. Moreover, SSPMOs have improved fluorescence lifetimes compared with that of SNARF-SB. Therefore, SSPMOs can be a progressive chemical sensor for Cu2+ due to its high selectivity, recyclability, and stability.
Collapse