1
|
Itina TE. Understanding mono- and bi-metallic Au and Ni nanoparticle responses to fast heating. NANOSCALE ADVANCES 2024:d4na00634h. [PMID: 39263251 PMCID: PMC11382544 DOI: 10.1039/d4na00634h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Nanoparticle assembly, alloying and fragmentation are fundamental processes with significant implications in various fields such as catalysis, materials science, and nanotechnology. Understanding these processes under fast heating conditions is crucial for tailoring nanoparticle properties and optimizing their applications. For this, we employ molecular dynamics simulations to obtain atomic-level insights into nanoparticle behavior. The performed simulations reveal intricate details of sintering, alloying and fragmentation mechanisms shedding light on the underlying physical phenomena governing these processes. The calculation results help to visualize nanoparticle evolution upon undercritical and supercritical heating elucidating not only the role of temperature, but also of nanoparticle sizes and composition. In particular, it is shown that surface tension and surface energy play important roles not only in nanoparticle melting but also in its fragmentation. When the added energy exceeds a critical threshold, the nanoparticle begins to experience alternating compression and expansion. If the tensile stress surpasses the material's strength limit, fragmentation becomes prominent. For very small particles (with radius smaller than ∼10 nm), this occurs more rapidly, whereas sub-nano-cavitation precedes the final fragmentation in larger particles, which behave more like droplets. Interestingly, this effect depends on composition in the case of AuNi alloy nanoparticles, as expected from the phase diagrams and excess energy. The heating level required to overcome the mixing barrier is also determined and is shown to play an important role in the evolution of AuNi nanoparticles, in addition to their size. Furthermore, our findings provide insights into controlling nanoparticle synthesis for various applications in numerous nanotechnological domains, such as catalysis, sensors, material analysis, as well as deseas diagnostics and treatment. This study bridges the gap between experimental observations and theoretical predictions paving the way for designing advanced nanomaterials with enhanced functionalities.
Collapse
Affiliation(s)
- Tatiana E Itina
- Université Jean Monnet Saint-Etienne, CNRS, Institut d Optique Graduate School, Laboratoire Hubert Curien UMR 5516 F-42023 Saint-Etienne France
| |
Collapse
|
2
|
Chowdhury P, Jha A, Bhandary D. Influence of Temperature-Guided SAM Growth on Wetting and Its Mass Transfer Models. J Phys Chem B 2023; 127:8208-8215. [PMID: 37703434 DOI: 10.1021/acs.jpcb.3c04173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The formation and growth of self-assembled monolayers (SAMs) composed of amphiphiles have garnered significant attention due to their diverse technical applications. This article reports the findings of molecular dynamics simulations aimed at elucidating the intricate relationship between the wetting behavior of amphiphiles, specifically n-alkanols, and the growth of their SAMs on a mica surface under varying temperature conditions. The investigation quantifies the structural characteristics of the formed SAMs, including density profiles, in-plane radial distribution functions, order parameters, and end-to-end length distributions of n-alkanol molecules within the SAM. Thermodynamic properties, such as the second virial coefficient and excess entropy, are examined in relation to temperature and time. The growth of the SAM is assessed by analyzing characteristic time scales at different temperatures and in-plane diffusion of n-alkanol molecules and utilizing classical theories of mass transfer to quantify the growth rate as a function of temperature. These results are then correlated with changes in the contact angle and spreading coefficient of n-alkanol droplets on the mica surface over time, providing insights into the impact of SAM growth on the wetting behavior and the mass transfer model of such systems.
Collapse
Affiliation(s)
- Prateek Chowdhury
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi, UP 221005, India
| | - Ayush Jha
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi, UP 221005, India
| | - Debdip Bhandary
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi, UP 221005, India
| |
Collapse
|
3
|
Molecular dynamics simulation of mass transfer characteristics of DMSO at the hexane/water interface in the presence of amphiphilic Janus nanoparticles. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Akbarzadeh H, Mehrjouei E, Abbaspour M, Shamkhali AN. Melting Behavior of Bimetallic and Trimetallic Nanoparticles: A Review of MD Simulation Studies. Top Curr Chem (Cham) 2021; 379:22. [PMID: 33890199 DOI: 10.1007/s41061-021-00332-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
In recent years, bimetallic and trimetallic nanoparticles (NPs) have become attractive materials for many researchers especially in the field of catalysis due to their interesting physical and chemical properties. These unique properties arise mainly from simultaneous effects of two different metal atoms in their structure. In this review, recent theoretical studies on these NPs using molecular dynamics simulation are presented. Since investigation of thermodynamic stabilities of metallic NPs is a critical factor in their construction for catalytic applications, our focus in this review is on the thermal stability of bimetallic and trimetallic NPs. The melting behavior of these materials with different atomic arrangements including core-shell, three-shell, crown-jewel, ordered and disordered alloy, and Janus materials are discussed. Other factors including stress, strain, atomic radius, thermal expansion coefficient, cohesive energy, surface energy, size, composition, and morphology are described in detail, because these properties lead to complexity in the melting behavior of bimetallic and trimetallic NPs.
Collapse
Affiliation(s)
- Hamed Akbarzadeh
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, 96179-76487, Sabzevar, Iran.
| | - Esmat Mehrjouei
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, 96179-76487, Sabzevar, Iran
| | - Mohsen Abbaspour
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, 96179-76487, Sabzevar, Iran
| | - Amir Nasser Shamkhali
- Department of Chemistry, Faculty of Basic Sciences, University of Mohaghegh Ardabili, 56199-11367, Ardabil, Iran
| |
Collapse
|
5
|
Merz SN, Hoover E, Egorov SA, DuBay KH, Green DL. Predicting the effect of chain-length mismatch on phase separation in noble metal nanoparticle monolayers with chemically mismatched ligands. SOFT MATTER 2019; 15:4498-4507. [PMID: 31094390 DOI: 10.1039/c9sm00264b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoparticles (NPs) protected with a ligand monolayer hold promise for a wide variety of applications, from photonics and catalysis to drug delivery and biosensing. Monolayers that include a mixture of ligand types can have multiple chemical functionalities and may also self-assemble into advantageous patterns. Previous work has shown that both chemical and length mismatches among these surface ligands influence phase separation. In this work, we examine the interplay between these driving forces, first by using our previously-developed configurationally-biased Monte Carlo (CBMC) algorithm to predict, then by using our matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) technique to experimentally probe, the surface morphologies of a series of two-ligand mixtures on the surfaces of ultrasmall silver NPs. Specifically, we examine three such mixtures, each of which has the same chemical mismatch (consisting of a hydrophobic alkanethiol and a hydrophilic mercapto-alcohol), but varying degrees of chain-length mismatch. This delicate balance between chemical and length mismatches provides a challenging test for our CBMC prediction algorithm. Even so, the simulations are able to quantitatively predict the MALDI-MS results for all three ligand mixtures, while also providing atomic-scale details from the equilibrated ligand structures, such as patch sizes and co-crystallization patterns. The resulting monolayer morphologies range from randomly-mixed to Janus-like, demonstrating that chain-length modifications are an effective way to tune monolayer morphology without needing to alter chemical functionalities.
Collapse
Affiliation(s)
- Steven N Merz
- Department of Chemical Engineering, University of Virginia, Thornton Hall, P.O. Box 400259, Charlottesville, VA 22904, USA.
| | | | | | | | | |
Collapse
|
6
|
Wang K, Li F, Tian D, Xu J, Liu Y, Hou Z, Zhou H, Chen S, Zhu J, Yang Z. Segmental Janus nanoparticles of polymer composites. Chem Commun (Camb) 2019; 55:8114-8117. [DOI: 10.1039/c9cc03067k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We demonstrate a facile yet robust “plasma etching and grafting” strategy to prepare Janus nanoparticles coated with binary polymer brushes on two different sides. The ratio of two types of polymers can be tailored by tuning the plasma etching power.
Collapse
|
7
|
Merz SN, Farrell ZJ, Pearring J, Hoover E, Kester M, Egorov SA, Green DL, DuBay KH. Computational and Experimental Investigation of Janus-like Monolayers on Ultrasmall Noble Metal Nanoparticles. ACS NANO 2018; 12:11031-11040. [PMID: 30347139 DOI: 10.1021/acsnano.8b05188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Detection of monolayer morphology on nanoparticles smaller than 10 nm has proven difficult with traditional visualization techniques. Here matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) is used in conjunction with atomistic simulations to detect the formation of Janus-like monolayers on noble metal nanoparticles. Silver metal nanoparticles were synthesized with a monolayer consisting of dodecanethiol (DDT) and mercaptoethanol (ME) at varying ratios. The nanoparticles were then analyzed using MALDI-MS, which gives information on the local ordering of ligands on the surface. The MALDI-MS analysis showed large deviations from random ordering, suggesting phase separation of the DDT/ME monolayers. Atomistic Monte Carlo (MC) calculations were then used to simulate the nanoscale morphology of the DDT/ME monolayers. In order to quantitatively compare the computational and experimental results, we developed a method for determining an expected MALDI-MS spectrum from the atomistic simulation. Experiments and simulations show quantitative agreement, and both indicate that the DDT/ME ligands undergo phase separation, resulting in Janus-like nanoparticle monolayers with large, patchy domains.
Collapse
Affiliation(s)
- Steven N Merz
- Department of Chemical Engineering , University of Virginia , 102 Engineers Way , Charlottesville , Virginia 22904 , United States
| | - Zachary J Farrell
- Department of Chemical Engineering , University of Virginia , 102 Engineers Way , Charlottesville , Virginia 22904 , United States
| | - Joseph Pearring
- Department of Chemical Engineering , University of Virginia , 102 Engineers Way , Charlottesville , Virginia 22904 , United States
| | - Elise Hoover
- Department of Biomedical Engineering , University of Virginia , Thornton Hall , P.O. Box 400259, Charlottesville , Virginia 22904 , United States
| | - Mark Kester
- School of Medicine , University of Virginia , 1215 Lee Street , Charlottesville , Virginia 22908 , United States
| | - Sergei A Egorov
- Department of Chemistry , University of Virginia , McCormick Road , PO Box 400319, Charlottesville , Virginia 22904 , United States
- Leibniz Institute for Polymer Research Dresden , Hohe Strasse 6 , D-01069 Dresden , Germany
| | - David L Green
- Department of Chemical Engineering , University of Virginia , 102 Engineers Way , Charlottesville , Virginia 22904 , United States
| | - Kateri H DuBay
- Department of Chemistry , University of Virginia , McCormick Road , PO Box 400319, Charlottesville , Virginia 22904 , United States
| |
Collapse
|
8
|
Wang Q, Geng Y, Li J, Yin M, Hu Y, Liu Y, Pan K. Novel magnetic-fluorescent bifunctional Janus nanofiber membrane. NANOTECHNOLOGY 2018; 29:135702. [PMID: 29363616 DOI: 10.1088/1361-6528/aaaa2e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Magnetic-fluorescent bifunctional materials have received global attention owing to their potential in many fields. Herein, we reported a novel magnetic-fluorescent bifunctional Janus nanofiber membrane (NFM) by adding the as-prepared magnetic CoFe2O4 nanoparticles into the polyacrylonitrile (PAN) side (m-PAN) and the fluorescent molecules of 1,8-naphthalene anhydride (1,8-NAD) into the polyvinylpyrrolidone (PVP) side (f-PVP) via electrospinning method. The obtained m-PAN/f-PVP Janus NFM exhibited excellent magnetic performance and high fluorescent properties due to the unique structure. Compared with the m-PAN/f-PVP composite NFM, the Janus NFM showed higher fluorescent performance because the fluorescent molecules were isolated from the magnetic nanoparticles. In addition, the Janus NFM not only maintain the good self-supporting state in water but also realize a directional movement attracted by a magnet. The unique structure of Janus nanofiber is of great importance and demonstrates great potential applications.
Collapse
|
9
|
Akbarzadeh H, Abbaspour M, Mehrjouei E, Ramezanzadeh S. Pt-Co nanocluster in hollow carbon nanospheres. J Comput Chem 2018; 39:1267-1274. [DOI: 10.1002/jcc.25191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/09/2018] [Accepted: 01/28/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Hamed Akbarzadeh
- Department of Chemistry, Faculty of Basic Sciences; Hakim Sabzevari University; Sabzevar 96179-76487 Iran
| | - Mohsen Abbaspour
- Department of Chemistry, Faculty of Basic Sciences; Hakim Sabzevari University; Sabzevar 96179-76487 Iran
| | - Esmat Mehrjouei
- Department of Chemistry, Faculty of Basic Sciences; Hakim Sabzevari University; Sabzevar 96179-76487 Iran
| | - Samira Ramezanzadeh
- Department of Chemistry, Faculty of Basic Sciences; Hakim Sabzevari University; Sabzevar 96179-76487 Iran
| |
Collapse
|
10
|
Akbarzadeh H, Mehrjouei E, Ramezanzadeh S, Izanloo C. Ni-Co bimetallic nanoparticles with core-shell, alloyed, and Janus structures explored by MD simulation. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.135] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|