Wakizaka M, Imaoka T, Yamamoto K. Composition-defined nanosized assemblies that contain heterometallic early 4d/5d-transition-metals.
Dalton Trans 2019;
48:14261-14268. [PMID:
31408064 DOI:
10.1039/c9dt03094h]
[Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The controlled assembly of early transition metals remains a challenging research target, especially with respect to the generation of heterometallic molecules and nanomaterials. In this study, metal chlorides of the early 4d/5d-transition-metals, i.e., ZrCl4, NbCl5, MoCl5, HfCl4, TaCl5, and WCl6, were stoichiometrically introduced into a tetraphenylmethane-core dendritic-phenylazomethine generation 4 dendrimer in the presence of an optimal amount of organic ligands such as pyridine and 3-chloropyridine. The coordinative interactions between the metal chlorides and the imines in the dendrimers indicated a positive correlation for the Lewis acidity of the metals. Moreover, it was clearly demonstrated for the first time that heterometallic assemblies of defined composition contain four kinds of early 4d/5d-transition-metals, such as TaV, NbV, MoV, and ZrIV, which was confirmed by UV-vis titration, XPS, and HAADF-STEM/EDS measurements. The results of this study should provide access to new routes to produce nanomaterials composed of heterometallic early 4d/5d-transition metals.
Collapse