1
|
Hunter SJ, György C. Sub-micron colloidosomes with tuneable cargo release prepared using epoxy-functional diblock copolymer nanoparticles. J Colloid Interface Sci 2024; 675:999-1010. [PMID: 39003819 DOI: 10.1016/j.jcis.2024.07.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
HYPOTHESIS Pickering emulsions stabilized using epoxy-functional block copolymer nanoparticles should enable the formation of sub-micron colloidosomes that are stable with respect to Ostwald ripening and allow tuneable small-molecule cargo release. EXPERIMENTS Epoxy-functional diblock copolymer nanoparticles of 24 ± 4 nm were prepared via reversible addition-fragmentation chain transfer (RAFT)-mediated dispersion polymerization of methyl methacrylate (MMA) in n-dodecane. Sub-micron water-in-n-dodecane Pickering emulsions were prepared by high-pressure microfluidization. The epoxy groups were then ring-opened using 3-aminopropyltriethoxysilane (APTES) to prepare cross-linked colloidosomes. The colloidosomes survived removal of the aqueous phase using excess solvent. The silica shell thickness could be adjusted from 11 to 23 nm by varying the APTES/GlyMA molar ratio. The long-term stability of the colloidosomes was compared to precursor Pickering emulsions. Finally, the permeability of the colloidosomes was examined by encapsulation and release of a small molecule. FINDINGS The Pickering emulsion droplet diameter was reduced from 700 to 200 nm by increasing the salt concentration within the aqueous phase. In the absence of salt, emulsion droplets were unstable due to Ostwald ripening. However, emulsions prepared with 0.5 M NaCl are stable for at least one month. The cross-linked colloidosomes demonstrated much more stable than the precursor sub-micron emulsions prepared without salt. The precursor nanoemulsions exhibited complete release (>99 %) of an encapsulated dye, while higher APTES/GlyMA ratios resulted in much lower dye release, yielding nearly impermeable silica capsules that retained around 95 % of the dye.
Collapse
Affiliation(s)
- Saul J Hunter
- Joseph Banks Laboratories, School of Chemistry, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK.
| | - Csilla György
- Dainton Building, Department of Chemistry, Brook Hill, University of Sheffield, Sheffield, South Yorkshire S3 7HF, UK
| |
Collapse
|
2
|
Gaur D, Dubey NC, Tripathi BP. Designing Configurable Soft Microgelsomes as a Smart Biomimetic Protocell. Biomacromolecules 2024; 25:1108-1118. [PMID: 38236272 DOI: 10.1021/acs.biomac.3c01127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Self-assembly is an intriguing aspect of primitive cells. The construction of a semipermeable compartment with a robust framework of soft material capable of housing an array of functional components for chemical changes is essential for the fabrication of synthetic protocells. Microgels, loosely cross-linked polymer networks, are suitable building blocks for protocell capsule generation due to their porous structure, tunable properties, and assembly at the emulsion interface. Here, we present an interfacial assembly of microgel-based microcompartments (microgelsomes, MGC) that are defined by a semipermeable, temperature-responsive elastic membrane formed by densely packed microgels in a monolayer. The water-dispersible microgelsomes can thermally shuttle between 10 and 95 °C while retaining their structural integrity. Importantly, the microgelsomes exhibited distinct properties of protocells, such as cargo encapsulation, semipermeable membrane, DNA amplification, and membrane-gated compartmentalized enzymatic cascade reaction. This versatile approach for the construction of biomimetic microcompartments augments the protocell library and paves the way for programmable synthetic cells.
Collapse
Affiliation(s)
- Divya Gaur
- Functional Materials & Membranes Laboratory, Department of Materials Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Nidhi C Dubey
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Bijay P Tripathi
- Functional Materials & Membranes Laboratory, Department of Materials Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
3
|
Payizila Z, Teng F, Huang X, Liu W, Wu T, Sun Q, Zhao S. Efficient Fabrication of Self-Assembled Polylactic Acid Colloidosomes for Pesticide Encapsulation. ACS OMEGA 2024; 9:3781-3792. [PMID: 38284048 PMCID: PMC10809374 DOI: 10.1021/acsomega.3c07802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024]
Abstract
Colloidosomes are microcapsules whose shells are composed of cumulated or fused colloidal particles. When colloidosomes are used for in situ encapsulation, it is still a challenge to achieve a high encapsulation efficiency and controllable release by an effective fabrication method. Herein, we present a highly efficient route for the large-scale preparation of colloidosomes. The biodegradable polylactic acid (PLA) nanoparticles (NPs) as shell materials can be synthesized using an antisolvent precipitation method, and the possible formation mechanism was given through the molecular dynamics (MD) simulation. The theoretical values are basically consistent with the experimental results. Through the use of the modified and unmodified PLA NPs, the colloidosomes with controllable shell porosities can be easily constructed using spray drying technology. We also investigate the mechanism of colloidosomes successfully self-assembled by PLA NPs with various factors of inlet temperature, feed rate, and flow rates of compressed air. Furthermore, avermectin (AVM) was used as a model for in situ encapsulation and a controllable release. The spherical modified colloidosomes encapsulating AVM not only achieve a small mean diameter of 1.57 μm but also realize a high encapsulation efficiency of 89.7% and impermeability, which can be further verified by the MD simulation. AVM molecules gather around and clog the shell pores during the evaporation of water molecules. More importantly, the PLA colloidosomes also reveal excellent UV-shielding properties, which can protect AVM from photodegradation.
Collapse
Affiliation(s)
- Zulipiker Payizila
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Fuquan Teng
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xudong Huang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Wenbiao Liu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Tengfei Wu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qian Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Jia J, Liu RK, Sun Q, Wang JX. Efficient Construction of pH-Stimuli-Responsive Colloidosomes with High Encapsulation Efficiency. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38015806 DOI: 10.1021/acs.langmuir.3c02415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Intelligent responsive colloidosomes have attracted increasing attention for their potential to enhance the efficacy and decrease the side effects of drugs in biomedical applications. However, a low encapsulation efficiency and complicated preparation method greatly limit their development. Herein, we report an efficient approach for the construction of pH-stimuli-responsive colloidosomes with high encapsulation efficiency by a high-gravity technology. The conditions under which latex particles with different methacrylic acid contents can successfully self-assemble into colloidosomes are explored. During the preparation process, emulsions emulsified for only 10 min at 2500 rpm in a unique high-gravity shearing surroundings are clarified owing to the greatly enhanced micromixing, while the emulsions emulsified for 30 min by a traditional high-speed shear machine at 4000 rpm are still yellow-white. More importantly, regular spherical colloidosomes encapsulating an anticancer drug doxorubicin not only achieve a small mean diameter of 2.82 μm but also realize a high encapsulation efficiency of 76.5%. The release performance of doxorubicin has an obvious pH-stimuli-responsive regularity and follows the first-order model of sustained release. The construction of intelligent responsive colloidosomes as drug carriers provides a route for controlled drug release and biomedical applications.
Collapse
Affiliation(s)
- Jia Jia
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Rong-Kun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qian Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
5
|
Toor R, Neujahr Copstein A, Trébuchet C, Goudeau B, Garrigue P, Lapeyre V, Perro A, Ravaine V. Responsive microgels-based colloidosomes constructed from all-aqueous pH-switchable coacervate droplets. J Colloid Interface Sci 2023; 630:66-75. [DOI: 10.1016/j.jcis.2022.10.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/21/2022]
|
6
|
Wang Y, Zhao Q, Haag R, Wu C. Biocatalytic Synthesis Using Self-Assembled Polymeric Nano- and Microreactors. Angew Chem Int Ed Engl 2022; 61:e202213974. [PMID: 36260531 PMCID: PMC10100074 DOI: 10.1002/anie.202213974] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 11/18/2022]
Abstract
Biocatalysis is increasingly being explored for the sustainable development of green industry. Though enzymes show great industrial potential with their high efficiency, specificity, and selectivity, they suffer from poor usability and stability under abiological conditions. To solve these problems, researchers have fabricated nano- and micro-sized biocatalytic reactors based on the self-assembly of various polymers, leading to highly stable, functional, and reusable biocatalytic systems. This Review highlights recent progress in self-assembled polymeric nano- and microreactors for biocatalytic synthesis, including polymersomes, reverse micelles, polymer emulsions, Pickering emulsions, and static emulsions. We categorize these reactors into monophasic and biphasic systems and discuss their structural characteristics and latest successes with representative examples. We also consider the challenges and potential solutions associated with the future development of this field.
Collapse
Affiliation(s)
- Yangxin Wang
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu Road(S) 30, 211816, Nanjing, P.R. China
| | - Qingcai Zhao
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark.,Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| |
Collapse
|
7
|
Tang X, Duan W, Yang M, Xu K, Zheng C. Construction and degradation mechanism of polylactic acid-pH-responsive microgel composite system plugging system. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2106996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Xiaoli Tang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, The People's Republic of China
| | - Wenmeng Duan
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, The People's Republic of China
| | - Min Yang
- Budget management department of PetroChina Tarim Oilfield Company, Xinjiang, The People's Republic of China
| | - Ke Xu
- PetroChina Research Institute of Petroleum Exploration & Development, Beijing, The People's Republic of China
| | - Cunchuan Zheng
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, The People's Republic of China
| |
Collapse
|
8
|
Pan J, Wen X, Wang M, Li J, Li X, Feng A, Zhang L, Thang SH. Preparation of Thermo‐ and pH‐Responsive Microgels Based on Complementary Nucleobase Molecular Recognition. Macromol Rapid Commun 2022; 43:e2200239. [DOI: 10.1002/marc.202200239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/24/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jiasheng Pan
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
- Beijing Key Laboratory of Preparation and Processing of New Polymer Materials Beijing University of Chemical Technology Beijing 100029 China
| | - Xin Wen
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
- Beijing Key Laboratory of Preparation and Processing of New Polymer Materials Beijing University of Chemical Technology Beijing 100029 China
| | - Mu Wang
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
- Beijing Key Laboratory of Preparation and Processing of New Polymer Materials Beijing University of Chemical Technology Beijing 100029 China
| | - Jun Li
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
- Beijing Key Laboratory of Preparation and Processing of New Polymer Materials Beijing University of Chemical Technology Beijing 100029 China
| | - Xiangyu Li
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
- Beijing Key Laboratory of Preparation and Processing of New Polymer Materials Beijing University of Chemical Technology Beijing 100029 China
| | - Anchao Feng
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
- Beijing Key Laboratory of Preparation and Processing of New Polymer Materials Beijing University of Chemical Technology Beijing 100029 China
| | - Liqun Zhang
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
- Beijing Key Laboratory of Preparation and Processing of New Polymer Materials Beijing University of Chemical Technology Beijing 100029 China
| | - San H. Thang
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
9
|
Hu Y. Controlled evaporation-induced phase separation of droplets containing nanogels and salt molecules. RSC Adv 2022; 12:27977-27986. [PMID: 36320278 PMCID: PMC9523661 DOI: 10.1039/d2ra04585k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022] Open
Abstract
Droplets without protection from surfactants or surfactant-like objects normally experience merging or a coalescence process since it is thermodynamically favored. However, division or replication of droplets is thermodynamically unfavored and comparably more difficult to realize. Herein, we demonstrate that a population of droplets that are composed of nanogels and salt spontaneously undergo a separation process under a slow solvent evaporation condition. Each individual droplet underwent changes in size, shape and eventually developed into two domains, which was caused by the screening effect due to the increased salt concentration as a result of solvent evaporation. The two domains gradually separated into nanogel-rich and salt-rich parts. These two parts eventually evolved into nanogel aggregates and branched structures, respectively. This separation was mainly due to the salting out effect and dewetting. Comparison studies indicate that both the nanogels and salt are indispensable ingredients for the phase separation. These discoveries may have profound applications in the fields of biomimetics and offer new routes for self-replication systems. An individual droplet containing nanogels and salts can evolve into gel-rich and salt-rich two separate parts upon evaporation.![]()
Collapse
Affiliation(s)
- Yuandu Hu
- Departments of Materials Science and Engineering, Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| |
Collapse
|
10
|
Guan X, Liu Y, Wan Z, Steve Tse YL, Ngai T. Non-Covalent Reconfigurable Microgel Colloidosomes with a Well-Defined Bilayer Shell. Chem Sci 2022; 13:6205-6216. [PMID: 35733902 PMCID: PMC9159095 DOI: 10.1039/d2sc01082h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
Microgels are extremely interfacially active and are widely used to stabilize emulsions. However, they are commonly used to stabilize oil-in-water emulsions due to their intrinsic hydrophilicity and initially dispersed in water. In addition, there have been no attempts to control microgel structural layers that are formed at the interface and as a result it limits applications of microgel in advanced materials. Here, we show that by introducing octanol into poly(N-isopropylacrylamide-co-methacrylic acid) (PNIPAM-co-MAA) microgels, octanol-swollen microgels can rapidly diffuse from the initially dispersed oil phase onto the water droplet surface. This facilitates the formation of microgel-laden interfacial layers with strong elastic responses and also generates stable inverse water-in-oil Pickering emulsions. These emulsions can be used as templates to produce microgel colloidosomes, herein termed ‘microgelsomes’, with shells that can be fine-tuned from a particle monolayer to a well-defined bilayer. The microgelsomes can then be used to encapsulate and/or anchor nanoparticles, proteins, vitamin C, bio-based nanocrystals or enzymes. Moreover, the programmed release of these substances can be achieved by using ethanol as a trigger to mediate shell permeability. Thus, these reconfigurable microgelsomes with a microgel-bilayer shell can respond to external stimuli and demonstrate tailored properties, which offers novel insights into microgels and promise wider application of Pickering emulsions stabilized by soft colloids. Inverse W/O Pickering emulsions and reconfigurable microgelsomes with a well-defined bilayer structure are prepared from octanol-swollen PNIPAM-co-MAA microgels and the combination of binary microgels, which promise wider application of soft colloids.![]()
Collapse
Affiliation(s)
- Xin Guan
- Department of Chemistry, The Chinese University of Hong Kong Shatin N. T. Hong Kong China
| | - Yang Liu
- Department of Chemistry, The Chinese University of Hong Kong Shatin N. T. Hong Kong China
| | - Zhili Wan
- Department of Chemistry, The Chinese University of Hong Kong Shatin N. T. Hong Kong China
- School of Food Science and Technology, South China University of Technology Guangzhou 510640 China
| | - Ying-Lung Steve Tse
- Department of Chemistry, The Chinese University of Hong Kong Shatin N. T. Hong Kong China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong Shatin N. T. Hong Kong China
| |
Collapse
|
11
|
|
12
|
Pickering emulsions stabilized by thermoresponsive oligo(ethylene glycol)-based microgels: Effect of temperature-sensitivity on emulsion stability. J Colloid Interface Sci 2021; 589:96-109. [DOI: 10.1016/j.jcis.2020.12.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/20/2023]
|
13
|
Fernandez-Rodriguez MA, Martín-Molina A, Maldonado-Valderrama J. Microgels at interfaces, from mickering emulsions to flat interfaces and back. Adv Colloid Interface Sci 2021; 288:102350. [PMID: 33418470 DOI: 10.1016/j.cis.2020.102350] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022]
Abstract
In this review, we cover the topic of p(NIPAM) based microgels at interfaces, revisiting classical studies in light of the newest ones. In particular, we focus on their use as emulsifiers in the so-called mickering emulsions, i.e. Pickering emulsion stabilized by soft particles. Given the complexity of the experimental characterization and simulation of these soft particles at interfaces, the review is structured in progressive complexity levels, until we reach the highly interesting and promising responsiveness to stimuli of mickering emulsions. We start from the lowest level of complexity, the current understanding of the behavior of single microgels confined at a flat interface. Then, we discuss their collective behavior upon crowding, their responsiveness at interfaces, and their macroscopic properties as microgel films. Once we have the necessary characterization tools, we proceed to discuss the complex and convoluted picture of responsive mickering emulsions. The way is rough, with current controversial and contradicting studies, but it holds promising results as well. We state open questions worth of being tackled by the Soft Matter community, and we conclude that it is worth the trouble of continuing after the master theory of microgel interfacial activity, as it will pave the way to widely adopt responsive mickering emulsions as the worthy Pickering emulsion successors.
Collapse
Affiliation(s)
| | - Alberto Martín-Molina
- Department of Applied Physics, University of Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain; Institute Carlos I for Theoretical and Computational Physics, University of Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Julia Maldonado-Valderrama
- Department of Applied Physics, University of Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain; Excellence Unit "ModellingNature" (MNat), , University of Granada, Spain.
| |
Collapse
|
14
|
Dieng SM, Omran Z, Anton N, Thioune O, Djiboune AR, Sy PM, Messaddeq N, Ennahar S, Diarra M, Vandamme T. Pickering nano-emulsions stabilized by Eudragit RL100 nanoparticles as oral drug delivery system for poorly soluble drugs. Colloids Surf B Biointerfaces 2020; 191:111010. [PMID: 32315927 DOI: 10.1016/j.colsurfb.2020.111010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 11/27/2022]
Abstract
The purpose of this study was to develop Pickering water-in-oil nano-emulsions only stabilized by Eudragit RL100 nanoparticles (NPs), in order to increase the nano-emulsion stability and create a barrier to improve the drug encapsulation and better control the drug release. The first part of this study was dedicated to investigating the nano-emulsion formulation by ultrasonication and understanding the interfacial behavior and role of NPs in the stabilization of the water/oil interface. The focus was on the surface coverage in the function of the formulation parameters (volume fractions) to disclose the extents and limitations of the process. The main physicochemical analysis of the Pickering nano-emulsions was performed by dynamic light scattering and transmission electron microscopy. On the other hand, the second experimental approach was dedicated to understanding the interfacial behavior of the Eudragit RL100 NPs toward a model water/oil interface, using a dynamic tensiometer with axisymmetric drop shape analysis. The study investigated the NPs' adsorption, as well as their rheological behavior. The aim of this part was to reveal the main phenomena that govern the interactions between NPs and the interface in order to understand the origin of Pickering nano-emulsions' stability. The last part of the study was concerned with the stability and in vitro release of a model encapsulated drug (ketoprofen) in a gastric and simulated intestinal environment. The results showed that Pickering nano-emulsions significantly improved the resistance to gastric pH, inducing a significantly slower drug release compared to classical nano-emulsions' stabilized surfactants. These Pickering nano-emulsions appear as a promising technology to modify the delivery of a therapeutic agent, in the function of the pH, and can be, for instance, applied to the oral drug delivery of poorly soluble drugs.
Collapse
Affiliation(s)
- Sidy Mouhamed Dieng
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France; Université cheikh Anta Diop de Dakar, laboratoire de pharmacie galénique, Faculté de Médecine, de Pharmacie, laboratoire de physique et biophysique pharmaceutique, Faculté de Médecine, de Pharmacie et d'Odontologie, BP : 5005, Dakar Fann, Senegal; Université de Thiès, laboratoire de pharmacie galénique, UFR santé de Thiès, Thies, Sénégal Cité Malick SY BP 967, Thiès, Senegal.
| | - Ziad Omran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm AlQura University, 21955 Makkah, Saudi Arabia.
| | - Nicolas Anton
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France
| | - Oumar Thioune
- Université cheikh Anta Diop de Dakar, laboratoire de pharmacie galénique, Faculté de Médecine, de Pharmacie, laboratoire de physique et biophysique pharmaceutique, Faculté de Médecine, de Pharmacie et d'Odontologie, BP : 5005, Dakar Fann, Senegal
| | - Alphonse Rodrigue Djiboune
- Université cheikh Anta Diop de Dakar, laboratoire de pharmacie galénique, Faculté de Médecine, de Pharmacie, laboratoire de physique et biophysique pharmaceutique, Faculté de Médecine, de Pharmacie et d'Odontologie, BP : 5005, Dakar Fann, Senegal
| | - Papa Mady Sy
- Université cheikh Anta Diop de Dakar, laboratoire de pharmacie galénique, Faculté de Médecine, de Pharmacie, laboratoire de physique et biophysique pharmaceutique, Faculté de Médecine, de Pharmacie et d'Odontologie, BP : 5005, Dakar Fann, Senegal
| | - Nadia Messaddeq
- Université de Strasbourg, IGBMC, Inserm U1258, CNRS UMR7104, F-67000 Strasbourg, France
| | - Said Ennahar
- Université de Strasbourg, IPHC, UMR 7178, IPHC-DSA, CNRS, F-67400 Illkirch-Graffenstaden, France
| | - Mounibé Diarra
- Université cheikh Anta Diop de Dakar, laboratoire de pharmacie galénique, Faculté de Médecine, de Pharmacie, laboratoire de physique et biophysique pharmaceutique, Faculté de Médecine, de Pharmacie et d'Odontologie, BP : 5005, Dakar Fann, Senegal
| | - Thierry Vandamme
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France.
| |
Collapse
|
15
|
Xiao Z, Wang L, Lv C, Guo S, Lu X, Tao L, Duan Q, Yang Q, Luo Z. Preparation and characterization of pH-responsive Pickering emulsion stabilized by grafted carboxymethyl starch nanoparticles. Int J Biol Macromol 2020; 143:401-412. [DOI: 10.1016/j.ijbiomac.2019.10.261] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
|
16
|
Xue J, Ji W, Dong S, Zhang Z, Gao J, Yang P, Nie J, Du B. Degradable and Thermosensitive Microgels with Tannic Acid as the Sole Cross-Linker. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16353-16365. [PMID: 31718193 DOI: 10.1021/acs.langmuir.9b03112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Poly(N-isopropylacrylamide) (PNIPAM)-tannic acid (TA) microgels were successfully prepared via surfactant-free emulsion polymerization (SFEP) at 70 °C in aqueous solution using N-isopropylacrylamide (NIPAM) as the monomer and a natural polyphenol macromolecule, TA, as the sole cross-linker. The cross-linking network of the PNIPAM-TA microgels was confirmed to contain both physical cross-linking structures formed via hydrogen-bonding interactions between TA and PNIPAM chains and chemical cross-linking structures formed via capturing the radicals of propagating polymer chains by catechol and pyrogallol groups of TA. Furthermore, TA was applied to modify the surface of hydrophobic Fe3O4 nanoparticles, leading to hydrophilic Fe3O4@TA composite nanoparticles, which were successfully used as the cross-linker to fabricate PNIPAM-Fe3O4@TA organic-inorganic hybrid microgels. The obtained PNIPAM-TA and PNIPAM-Fe3O4@TA organic-inorganic hybrid microgels had a uniform spherical shape with a relatively narrow size distribution and exhibited thermosensitive behavior and pH-tunable degradation. The PNIPAM-TA microgels were stable in the pH range of 1.3-11.1 but underwent complete degradation with pH above 11.4. The PNIPAM-Fe3O4@TA hybrid microgels were partially degraded at pH values of 1.3 and 2.1, stable in the pH range of 3.1-11.1, and underwent complete degradation at pH above 11.4. The partial degradation of PNIPAM-Fe3O4@TA organic-inorganic hybrid microgels under strong acidic conditions was attributed to the disintegration of Fe3O4 nanoparticles. The complete degradation of both microgels at pH above 11.4 was attributed to the hydrolysis of ester groups of TA under strong alkali conditions.
Collapse
|
17
|
Atta AM, Ezzat AO, Al-Lohedan HA, Tawfeek AM, Alobaidi AA. Preparation of pH Responsive Polystyrene and Polyvinyl Pyridine Nanospheres Stabilized by Mickering Microgel Emulsions. NANOMATERIALS 2019; 9:nano9121693. [PMID: 31816812 PMCID: PMC6955766 DOI: 10.3390/nano9121693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 01/15/2023]
Abstract
New pH-sensitive polystyrene, PS, and poly(4-vinylpyridine), P4-VP, nanospheres were prepared by using surfactant-free method based on soft microgels (Mickering emulsion). The formation of stable Mickering cyclohexane/water emulsions was investigated by using soft microgel particles of poly(acrylamide), PAAm, poly(2-acrylamido-2-methylpropane sulfonic acid), PAMPS, and sodium salt of PAMPS, PAMPS-Na, as stabilizers. The dynamic light scattering (DLS), optical microscopy, and scanning electron microscopy (SEM) were used to investigate the optimum conditions and effects of surrounding solutions on the microgels characteristics and their corresponding Mickering emulsions. The cyclohexane/water Mickering emulsions stabilized by softer and neutral charged microgels were considerably more stable under the same conditions. Furthermore, the stimuli-responsive properties of PAMPS microgel stabilized cyclohexane/water Mickering emulsions suggest the potential utility in the preparation of PS and P4-VP nanospheres. The effects of pH changes on the morphology, particle sizes, and surface charges of PS and P4-VP microgels were evaluated to prove the pH-sensitivity of the prepared nanospheres.
Collapse
|
18
|
|
19
|
Tatry MC, Qiu Y, Lapeyre V, Garrigue P, Schmitt V, Ravaine V. Sugar-responsive Pickering emulsions mediated by switching hydrophobicity in microgels. J Colloid Interface Sci 2019; 561:481-493. [PMID: 31740129 DOI: 10.1016/j.jcis.2019.11.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022]
Abstract
HYPOTHESIS Pickering emulsions stabilized by soft and responsive microgels can demulsify on demand upon microgel collapse. The concept has been explored with simple model microgels such as poly(N-isopropylacrylamide) (pNIPAM) and their derivatives, but the role of functionalization is largely unexplored. EXPERIMENTS Saccharide-responsive phenylboronic-modified microgels are used as Pickering emulsion stabilizers. Emulsion stability and microgel organization at drop surface are studied as a function of saccharide concentration. Better insight into their behavior at interfaces is gained through adsorption kinetics and Langmuir film studies at air-water interface. FINDINGS The functionalization of water-swollen microgels by phenylboronic functions imparts some hydrophobicity to the structure, at the origin of additional internal cross-links analogous which rigidify the structure compared to non-functionalized microgels, as proved by their slow adsorption kinetics and poor interfacial compressibility. Upon boronate ester formation with diol groups of the saccharide, the hydrophobic character of the phenylboronic acid decreases, increasing the adsorption kinetics and their interfacial compressibility. Emulsions are stable in the presence of saccharide, given the high deformability of the yet-hydrophilic microgels, and mechanically unstable with less deformable particles in low saccharide concentration. The hydrophobic-hydrophilic switch acts as a trigger to tune the microgel stabilizing properties.
Collapse
Affiliation(s)
- Marie-Charlotte Tatry
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France; Centre de Recherche Paul Pascal, UMR 5031, Université de Bordeaux, CNRS, 115 Avenue du Dr A. Schweitzer, 33600 Pessac, France
| | - Yating Qiu
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Véronique Lapeyre
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Patrick Garrigue
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Véronique Schmitt
- Centre de Recherche Paul Pascal, UMR 5031, Université de Bordeaux, CNRS, 115 Avenue du Dr A. Schweitzer, 33600 Pessac, France.
| | - Valérie Ravaine
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
| |
Collapse
|
20
|
Novel amphiphilic cellulose nanocrystals for pH-responsive Pickering emulsions. Carbohydr Polym 2019; 229:115401. [PMID: 31826496 DOI: 10.1016/j.carbpol.2019.115401] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/07/2019] [Accepted: 09/28/2019] [Indexed: 01/14/2023]
Abstract
Development of a green, recyclable emulsifier for pH-responsive Pickering emulsion would be of great importance to many industries. To this end, a novel emulsifier, benzyl-polyethyleneimine modified cellulose nanocrystals (Ben-PEI-CNCs), was developed via the periodate oxidation of cellulose nanocrystals and reductive amination. Ben-PEI-CNCs possess pH-responsive amphiphilicity due to the existence of hydrophilic amino and hydrophobic benzyl groups. The Pickering emulsions stabilized by Ben-PEI-CNC2 and Ben-PEI-CNC18 are very responsive to pH changes, and adjusting the pH from 3 to 7 effectively triggers oil-water separation and emulsification. Additionally, cyclic testing establishes the robustness of this process. Overall, this study demonstrates that Ben-PEI-CNCs can promote the transition from a stable emulsion to an unstable emulsion by adjusting the pH, allowing the recovery of oil and the recycling of the emulsifier.
Collapse
|
21
|
Murray BS. Microgels at fluid-fluid interfaces for food and drinks. Adv Colloid Interface Sci 2019; 271:101990. [PMID: 31330395 DOI: 10.1016/j.cis.2019.101990] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022]
Abstract
Various aspects of microgel adsorption at fluid-fluid interfaces of relevance to emulsion and foam stabilization have been reviewed. The emphasis is on the wider non-food literature, with a view to highlighting how this understanding can be applied to food-based systems. The various different types of microgel, their methods of formation and their fundamental behavioral traits at interfaces are covered. The latter includes aspects of microgel deformation and packing at interfaces, their deformability, size, swelling and de-swelling and how this affects their surface activity and stabilizing properties. Experimental and theoretical methods for measuring and modelling their behaviour are surveyed, including interactions between microgels themselves at interfaces but also other surface active species. It is concluded that challenges still remain in translating all the possibilities synthetic microgels offer to microgels based on food-grade materials only, but Nature's rich tool box of biopolymers and biosurfactants suggests that this field will still open up important new avenues of food microstructure development and control.
Collapse
|
22
|
Bago Rodriguez AM, Binks BP, Sekine T. Emulsions Stabilized with Polyelectrolyte Complexes Prepared from a Mixture of a Weak and a Strong Polyelectrolyte. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6693-6707. [PMID: 31063381 DOI: 10.1021/acs.langmuir.9b00897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The possibility of stabilizing emulsions with polyelectrolyte complexes (PEC) obtained from the interaction of two non-surface-active oppositely charged polyelectrolytes (PEL) is described. Poly(allylamine hydrochloride) (PAH) and poly(4-styrene sulfonate) sodium salt are selected as the weak cationic and the strong anionic polyelectrolyte, respectively. Aqueous polymer mixtures are investigated by light scattering to determine the size of the complexes and whether precipitation or complex coacervation occurs. The effects of PEL mixing ratio, pH, and PEL concentration are studied in detail. By increasing the pH, the transition precipitate-precipitate/coacervate-coacervate-polymer solution is observed. At low pH, both PEL are fully ionized and therefore precipitates (soft particles) arise as a result of strong electrostatic interactions. By increasing the pH, the degree of ionization of PAH decreases and weak electrostatic interactions ensue, supporting the formation of coacervate droplets. The most stable oil-in-water emulsions are prepared from aqueous mixtures around charge neutralization. Although emulsions can be prepared from coacervate droplet dispersions, their coalescence stability is worse than those stabilized by soft PEC particles. By increasing the PEL concentration, the average droplet diameter decreases and the fraction of cream in the emulsion increases for emulsions prepared with PEC particles, following the limited coalescence model. However, at high concentrations, emulsion stability is slightly worse probably due to extensive aggregation of the particles. Viscous high internal phase emulsions can be prepared at low pH in which oil droplets are deformed. Here, PEC particles are detected only at the oil-water interface. At lower oil content, excess particles form a network in the aqueous phase aiding emulsion stability to coalescence.
Collapse
Affiliation(s)
| | - Bernard P Binks
- Department of Chemistry and Biochemistry , University of Hull , Hull HU6 7RX , U.K
| | - Tomoko Sekine
- Shiseido Global Innovation Center , 1-2-11, Takashima , Nishi-ku, Yokohama 220-0011 , Japan
| |
Collapse
|
23
|
Palamarchuk KV, Artemov VV, Bukreeva TV. Microcapsules Based on Pickering Emulsion and Polyelectrolyte Layers: Biomedical Applications. ACTA ACUST UNITED AC 2018. [DOI: 10.1134/s1995078018020076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Wang W, Lu D, Zhu M, Saunders JM, Milani AH, Armes SP, Saunders BR. Highly deformable hydrogels constructed by pH-triggered polyacid nanoparticle disassembly in aqueous dispersions. SOFT MATTER 2018; 14:3510-3520. [PMID: 29671461 DOI: 10.1039/c8sm00325d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Most hydrogels are prepared using small-molecule monomers but unfortunately this approach may not be feasible for certain biomaterial applications. Consequently, alternative gel construction strategies have been established, which include using covalent inter-linking of preformed gel particles, or microgels (MGs). For example, covalently interlinking pH-responsive MGs can produce hydrogels comprising doubly crosslinked microgels (DX MGs). We hypothesised that the deformability of such DX MGs was limited by the presence of intra-MG crosslinking. Thus, in this study we designed new nanoparticle (NP)-based gels based on pH-swellable NPs that are not internally crosslinked. Two polyacid NPs were synthesised containing methacrylic acid (MAA) and either ethyl acrylate (EA) or methyl methacrylate (MMA). The PMAA-EA and PMAA-MMA NPs were subsequently vinyl-functionalised using glycidyl methacrylate (GMA) prior to gel formation via free-radical crosslinking. The NPs mostly disassembled on raising the solution pH but some self-crosslinking was nevertheless evident. The gels constructed from the EA- and MMA-based NPs had greater breaking strains than a control DX MG. The effect of varying the solution pH during curing on the morphology and mechanical properties of gels prepared using PMAA-MMA-GMA NPs was studied and both remarkable deformability and excellent recovery were observed. The gels were strongly pH-responsive and had tensile breaking strains of up to 420% with a compressive strain-at-break of more than 93%. An optimised formulation produced the most deformable and stretchable gel yet constructed using NPs or MGs as the only building block.
Collapse
Affiliation(s)
- Wenkai Wang
- School of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, UK.
| | - Dongdong Lu
- School of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, UK.
| | - Mingning Zhu
- School of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, UK.
| | - Jennifer M Saunders
- School of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, UK.
| | - Amir H Milani
- School of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, UK.
| | - Steven P Armes
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, UK
| | - Brian R Saunders
- School of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, UK.
| |
Collapse
|
25
|
Agrawal G, Agrawal R. Stimuli-Responsive Microgels and Microgel-Based Systems: Advances in the Exploitation of Microgel Colloidal Properties and Their Interfacial Activity. Polymers (Basel) 2018; 10:E418. [PMID: 30966453 PMCID: PMC6415239 DOI: 10.3390/polym10040418] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 11/22/2022] Open
Abstract
In this paper, recent developments in the chemical design of functional microgels are summarized. A wide range of available synthetic methods allows the incorporation of various reactive groups, charges, or biological markers inside the microgel network, thus controlling the deformation and swelling degree of the resulting smart microgels. These microgels can respond to various stimuli, such as temperature, pH, light, electric field, etc. and can show unique deformation behavior at the interface. Due to their switchability and interfacial properties, these smart microgels are being extensively explored for various applications, such as antifouling coatings, cell encapsulation, catalysis, controlled drug delivery, and tissue engineering.
Collapse
Affiliation(s)
- Garima Agrawal
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Paper Mill Road, Saharanpur 247001, Uttar Pradesh, India.
| | - Rahul Agrawal
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1500, USA.
| |
Collapse
|