1
|
Schürmann R, Gaál A, Sikora A, Ojeda D, Bartczak D, Goenaga-Infante H, Korpelainen V, Sauvet B, Deumer J, Varga Z, Gollwitzer C. Comparing novel small-angle x-ray scattering approaches for absolute size and number concentration measurements of spherical SiO 2particles to established methods. NANOTECHNOLOGY 2024; 35:385701. [PMID: 38861978 DOI: 10.1088/1361-6528/ad568b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Biomedical analytical applications, as well as the industrial production of high-quality nano- and sub-micrometre particles, require accurate methods to quantify the absolute number concentration of particles. In this context, small-angle x-ray scattering (SAXS) is a powerful tool to determine the particle size and concentration traceable to the Système international d'unités (SI). Therefore, absolute measurements of the scattering cross-section must be performed, which require precise knowledge of all experimental parameters, such as the electron density of solvent and particles, whereas the latter is often unknown. Within the present study, novel SAXS-based approaches to determine the size distribution, density and number concentrations of sub-micron spherical silica particles with narrow size distributions and mean diameters between 160 nm and 430 nm are presented. For the first-time traceable density and number concentration measurements of silica particles are presented and current challenges in SAXS measurements such as beam-smearing, poorly known electron densities and moderately polydisperse samples are addressed. In addition, and for comparison purpose, atomic force microscopy has been used for traceable measurements of the size distribution and single particle inductively coupled plasma mass spectrometry with the dynamic mass flow approach for the accurate quantification of the number concentrations of silica particles. The possibilities and limitations of the current approaches are critically discussed in this study.
Collapse
Affiliation(s)
- Robin Schürmann
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| | - Anikó Gaál
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, H-1117 Budapest, Hungary
| | - Aneta Sikora
- National Measurement Laboratory, LGC Limited, Teddington TW11 0LY, United Kingdom
| | - David Ojeda
- National Measurement Laboratory, LGC Limited, Teddington TW11 0LY, United Kingdom
| | - Dorota Bartczak
- National Measurement Laboratory, LGC Limited, Teddington TW11 0LY, United Kingdom
| | | | - Virpi Korpelainen
- National Metrology Institute VTT MIKES, Tekniikantie 1, FI-02150 Espoo, Finland
| | - Bruno Sauvet
- National Metrology Institute VTT MIKES, Tekniikantie 1, FI-02150 Espoo, Finland
| | - Jérôme Deumer
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| | - Zoltán Varga
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, H-1117 Budapest, Hungary
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Christian Gollwitzer
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| |
Collapse
|
2
|
Marques SS, Cant DJH, Minelli C, Segundo MA. Combining orthogonal measurements to unveil diclofenac encapsulation into polymeric and lipid nanocarriers. Anal Chim Acta 2023; 1262:341234. [PMID: 37179055 DOI: 10.1016/j.aca.2023.341234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
The quantification of the drug associated to nanoparticle carriers, often expressed in terms of encapsulation efficiency, is a regulatory requirement. The establishment of independent methods to evaluate this parameter provides a means for measurement validation, which is critical in providing confidence in the methods and enabling the robust characterization of nanomedicines. Chromatography is traditionally used to measure drug encapsulation into nanoparticles. Here, we describe an additional independent strategy based on analytical centrifugation. The encapsulation of diclofenac into nanocarriers was quantified based on the mass difference between placebo (i.e. unloaded) and loaded nanoparticles. This difference was estimated using particle densities measured by differential centrifugal sedimentation (DCS) and size and concentration values measured by particle tracking analysis (PTA). The proposed strategy was applied to two types of formulations, namely poly(lactic-co-glycolic acid) (PLGA) nanoparticles and nanostructured lipid carriers, which were analysed by DCS operated in sedimentation and flotation modes, respectively. The results were compared to those from high performance liquid chromatography (HPLC) measurements. Additionally, X-ray photoelectron spectroscopy analysis was used to elucidate the surface chemical composition of the placebo and loaded nanoparticles. The proposed approach enables the monitoring of batch-to-batch consistency and the quantification of diclofenac association to PLGA nanoparticles from 0.7 ng to 5 ng of drug per 1 μg of PLGA, with good linear correlation between DCS and HPLC results (R2 = 0.975). Using the same approach, similar quantification in lipid nanocarriers was possible for a loading of diclofenac ≥1.1 ng per 1 μg of lipids, with results in agreement with the HPLC method (R2 = 0.971). Hence, the strategy proposed here expands the analytical tools available for evaluating nanoparticles encapsulation efficiency, being thus significant for increasing the robustness of drug-delivery nanocarriers characterization.
Collapse
Affiliation(s)
- Sara S Marques
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, United Kingdom
| | - David J H Cant
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, United Kingdom
| | - Caterina Minelli
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, United Kingdom.
| | - Marcela A Segundo
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
3
|
Hinchliffe BA, Turner P, J H Cant D, De Santis E, Aggarwal P, Harris R, Templeton D, Shard AG, Hodnett M, Minelli C. Deagglomeration of DNA nanomedicine carriers using controlled ultrasonication. ULTRASONICS SONOCHEMISTRY 2022; 89:106141. [PMID: 36067646 PMCID: PMC9463456 DOI: 10.1016/j.ultsonch.2022.106141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Control over the agglomeration state of manufactured particle systems for drug and oligonucleotide intracellular delivery is paramount to ensure reproducible and scalable therapeutic efficacy. Ultrasonication is a well-established mechanism for the deagglomeration of bulk powders in dispersion. Its use in manufacturing requires strict control of the uniformity and reproducibility of the cavitation field within the sample volume to minimise within-batch and batch-to-batch variability. In this work, we demonstrate the use of a reference cavitating vessel which provides stable and reproducible cavitation fields over litre-scale volumes to assist the controlled deagglomeration of a novel non-viral particle-based plasmid delivery system. The system is the Nuvec delivery platform, comprising polyethylenimine-coated spiky silica particles with diameters of ∼ 200 nm. We evaluated the use of controlled cavitation at different input powers and stages of preparation, for example before and after plasmid loading. Plasmid loading was confirmed by X-ray photoelectron spectroscopy and gel electrophoresis. The latter was also used to assess plasmid integrity and the ability of the particles to protect plasmid from potential degradation caused by the deagglomeration process. We show the utility of laser diffraction and differential centrifugal sedimentation in quantifying the efficacy of product de-agglomeration in the microscale and nanoscale size range respectively. Transmission electron microscopy was used to assess potential damages to the silica particle structure due to the sonication process.
Collapse
Affiliation(s)
| | - Piers Turner
- National Physical Laboratory, Hampton Road, Teddington SW11 0LW, UK
| | - David J H Cant
- National Physical Laboratory, Hampton Road, Teddington SW11 0LW, UK
| | | | - Purnank Aggarwal
- National Physical Laboratory, Hampton Road, Teddington SW11 0LW, UK
| | - Rob Harris
- N4 Pharma, Weston House, Bradgate Park View, Chellaston DE73 5UJ, UK
| | - David Templeton
- N4 Pharma, Weston House, Bradgate Park View, Chellaston DE73 5UJ, UK
| | - Alex G Shard
- National Physical Laboratory, Hampton Road, Teddington SW11 0LW, UK
| | - Mark Hodnett
- National Physical Laboratory, Hampton Road, Teddington SW11 0LW, UK
| | - Caterina Minelli
- National Physical Laboratory, Hampton Road, Teddington SW11 0LW, UK.
| |
Collapse
|
4
|
Kato Y, Morimoto T, Kobashi K, Yamaguchi T, Mori T, Sugino T, Okazaki T. Porosity and size analysis of porous microparticles by centrifugal sedimentation with and without density gradient. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Alshawwa SZ, Kassem AA, Farid RM, Mostafa SK, Labib GS. Nanocarrier Drug Delivery Systems: Characterization, Limitations, Future Perspectives and Implementation of Artificial Intelligence. Pharmaceutics 2022; 14:883. [PMID: 35456717 PMCID: PMC9026217 DOI: 10.3390/pharmaceutics14040883] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
There has been an increasing demand for the development of nanocarriers targeting multiple diseases with a broad range of properties. Due to their tiny size, giant surface area and feasible targetability, nanocarriers have optimized efficacy, decreased side effects and improved stability over conventional drug dosage forms. There are diverse types of nanocarriers that have been synthesized for drug delivery, including dendrimers, liposomes, solid lipid nanoparticles, polymersomes, polymer-drug conjugates, polymeric nanoparticles, peptide nanoparticles, micelles, nanoemulsions, nanospheres, nanocapsules, nanoshells, carbon nanotubes and gold nanoparticles, etc. Several characterization techniques have been proposed and used over the past few decades to control and predict the behavior of nanocarriers both in vitro and in vivo. In this review, we describe some fundamental in vitro, ex vivo, in situ and in vivo characterization methods for most nanocarriers, emphasizing their advantages and limitations, as well as the safety, regulatory and manufacturing aspects that hinder the transfer of nanocarriers from the laboratory to the clinic. Moreover, integration of artificial intelligence with nanotechnology, as well as the advantages and problems of artificial intelligence in the development and optimization of nanocarriers, are also discussed, along with future perspectives.
Collapse
Affiliation(s)
- Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; or
| | - Abeer Ahmed Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21523, Egypt; (R.M.F.); (G.S.L.)
| | - Ragwa Mohamed Farid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21523, Egypt; (R.M.F.); (G.S.L.)
| | - Shaimaa Khamis Mostafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt;
| | - Gihan Salah Labib
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21523, Egypt; (R.M.F.); (G.S.L.)
| |
Collapse
|
6
|
Peppersack C, Kwade A, Breitung-Faes S. Selective particle size analysis in binary submicron particle mixtures using density dependent differential sedimentation. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Pei Y, Hinchliffe BA, Minelli C. Measurement of the Size Distribution of Multimodal Colloidal Systems by Laser Diffraction. ACS OMEGA 2021; 6:14049-14058. [PMID: 34124428 PMCID: PMC8190786 DOI: 10.1021/acsomega.1c00411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/09/2021] [Indexed: 06/01/2023]
Abstract
Laser diffraction (LD) is a well-established tool for the measurement of particle size distribution. Recently, its demand and use for the measurement of complex biological systems have increased. Among the challenges that these types of samples present, there is the presence of multiple particle populations whose modal size may span across several orders of magnitude. In this study, we assessed the accuracy of LD for the measurement of the modal diameter of both single and mixed populations of polystyrene particles with diameters ranging from 60 nm to 40 μm. We discuss the application of different available algorithms to the analysis of the data and their impact on the measurement results. Independent methods were applied to guide the selection of the algorithms and validate the measured size distributions. We found that the modal diameters of the particle size distribution measured by LD for the mixed suspension was accurate within 2 % for particles larger than 1 μm and generally within 25 % for the particles tested. Method repeatability was found to be robust, with deviations below 1%. The method was also found to be useful for estimating the relative concentration of the particle populations in the mixed samples. This study provides confidence in the use of LD for the measurement of complex multimodal colloidal samples.
Collapse
|
8
|
Boldridge D, Kamiti M, Remsen EE. Avoiding the Spherical Particle Assumption: Fractal Particle Density, Size, and Structure Characterization through Combined Sedimentation and Viscometry Measurements. Anal Chem 2020; 92:15034-15041. [PMID: 33152242 DOI: 10.1021/acs.analchem.0c02983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Physically meaningful characterization of irregularly shaped particles continues to present substantial challenges to the experimentalist. "Equivalent diameters" based on experimental techniques such as static and dynamic light scattering or sedimentation have proliferated to the point that they are often no longer recognized as equivalent. This study demonstrates the use of dual-fluid disk centrifuge photosedimentometry coupled with rheological measurements of viscosity to provide direct insights into both the average mass of a structured particle size distribution and the average hydrodynamic diameter.
Collapse
Affiliation(s)
- David Boldridge
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Drive, Boise, Idaho 83725-1520, United States
| | - Mungai Kamiti
- Versum Materials, US, LLC, 8555 South River Parkway, Tempe, Arizona 85284, United States
| | - Edward E Remsen
- Mund-Lagowski Department of Chemistry and Biochemistry, Bradley University, 1501 West Bradley Avenue, Peoria, Illinois 61625, United States
| |
Collapse
|
9
|
Antúnez Domínguez JM, Ramaye Y, Dabrio M, Kestens V. Validation of a Homogeneous Incremental Centrifugal Liquid Sedimentation Method for Size Analysis of Silica (Nano)particles. MATERIALS 2020; 13:ma13173806. [PMID: 32872187 PMCID: PMC7503812 DOI: 10.3390/ma13173806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Silica nanoparticles display many unique physicochemical properties that make them desirable for use in a wide variety of consumer products and composite materials. Accurately measuring the size of these nanoparticles is important for achieving the desired nanoscale functionality of the final product and for regulatory compliances. This study covers the validation of a centrifugal liquid sedimentation method for accurate measurement of the Stokes diameter of silica particles with a near-spherical shape and dimensions in the nanometer and sub-nanometer scale range. The validated method provided unbiased results in the range of 50 nm to 200 nm, with a lower limit of detection of ≤20 nm. The relative standard uncertainties for precision, quantified in terms of repeatability and day-to-day variation, ranged from 0.2% to 1.0% and from <0.1% to 0.5%, respectively. The standard uncertainty for trueness was assessed at 4.6%. Within its working range, the method was found robust with respect to the type of cuvette, light factor, operator, and for defining the meniscus of the sample suspension. Finally, a relative expanded measurement uncertainty of 10% confirmed the satisfactory performance of the method.
Collapse
|
10
|
Ploetz E, Zimpel A, Cauda V, Bauer D, Lamb DC, Haisch C, Zahler S, Vollmar AM, Wuttke S, Engelke H. Metal-Organic Framework Nanoparticles Induce Pyroptosis in Cells Controlled by the Extracellular pH. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907267. [PMID: 32182391 DOI: 10.1002/adfm.201909062] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 05/23/2023]
Abstract
Ion homeostasis is essential for cellular survival, and elevated concentrations of specific ions are used to start distinct forms of programmed cell death. However, investigating the influence of certain ions on cells in a controlled way has been hampered due to the tight regulation of ion import by cells. Here, it is shown that lipid-coated iron-based metal-organic framework nanoparticles are able to deliver and release high amounts of iron ions into cells. While high concentrations of iron often trigger ferroptosis, here, the released iron induces pyroptosis, a form of cell death involving the immune system. The iron release occurs only in slightly acidic extracellular environments restricting cell death to cells in acidic microenvironments and allowing for external control. The release mechanism is based on endocytosis facilitated by the lipid-coating followed by degradation of the nanoparticle in the lysosome via cysteine-mediated reduction, which is enhanced in slightly acidic extracellular environment. Thus, a new functionality of hybrid nanoparticles is demonstrated, which uses their nanoarchitecture to facilitate controlled ion delivery into cells. Based on the selectivity for acidic microenvironments, the described nanoparticles may also be used for immunotherapy: the nanoparticles may directly affect the primary tumor and the induced pyroptosis activates the immune system.
Collapse
Affiliation(s)
- Evelyn Ploetz
- Department of Chemistry and Center for NanoScience (CeNS), LMU Munich, Munich, 81377, Germany
- Nanosystems Initiative Munich (NIM), LMU Munich, Munich, 81377, Germany
- Center for Integrated Protein Science Munich (CiPSM), LMU Munich, Munich, 81377, Germany
| | - Andreas Zimpel
- Department of Chemistry and Center for NanoScience (CeNS), LMU Munich, Munich, 81377, Germany
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Torino, 10129, Italy
| | - David Bauer
- Department of Chemistry, TU Munich, Munich, 81377, Germany
| | - Don C Lamb
- Department of Chemistry and Center for NanoScience (CeNS), LMU Munich, Munich, 81377, Germany
- Nanosystems Initiative Munich (NIM), LMU Munich, Munich, 81377, Germany
- Center for Integrated Protein Science Munich (CiPSM), LMU Munich, Munich, 81377, Germany
| | | | - Stefan Zahler
- Department of Pharmacy, LMU Munich, Munich, 81377, Germany
| | | | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, UPV/EHU Science Park, Leioa, 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Hanna Engelke
- Department of Chemistry and Center for NanoScience (CeNS), LMU Munich, Munich, 81377, Germany
| |
Collapse
|
11
|
Montoro Bustos AR, Pettibone JM, Murphy KE. Characterization of Nanoparticles: Advances. NANOPARTICLE DESIGN AND CHARACTERIZATION FOR CATALYTIC APPLICATIONS IN SUSTAINABLE CHEMISTRY 2019. [DOI: 10.1039/9781788016292-00037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Over the past two decades, the unique properties of engineered nanoparticles (NPs) have placed them at the centre of revolutionary advancements in many sectors of science, technology and commerce. Multi-technique and multi-disciplinary analytical approaches are required to identify, quantify, and characterize the chemical composition, size and size distribution, surface properties and the number and concentration of NPs. In this chapter, an overview of the recent advances in the characterization of NPs will be presented.
Collapse
Affiliation(s)
- A. R. Montoro Bustos
- National Institute of Standards and Technology 100 Bureau Drive Gaithersburg MD 20899-1070 USA
| | - J. M. Pettibone
- National Institute of Standards and Technology 100 Bureau Drive Gaithersburg MD 20899-1070 USA
| | - K. E. Murphy
- National Institute of Standards and Technology 100 Bureau Drive Gaithersburg MD 20899-1070 USA
| |
Collapse
|
12
|
da Cunha CEP, Rodrigues ESB, Fernandes Alecrim M, Thomaz DV, Macêdo IYL, Garcia LF, de Oliveira Neto JR, Moreno EKG, Ballaminut N, de Souza Gil E. Voltammetric Evaluation of Diclofenac Tablets Samples through Carbon Black-Based Electrodes. Pharmaceuticals (Basel) 2019; 12:E83. [PMID: 31167398 PMCID: PMC6630689 DOI: 10.3390/ph12020083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 12/21/2022] Open
Abstract
Diclofenac (DIC) is a non-steroidal anti-inflammatory drug of wide use around the world. Electroanalytical methods display a high analytical potential for application in pharmaceutical samples but the drawbacks concerning electrode fouling and reproducibility are of major concern. Henceforth, the aim of this work was to propose the use of alternative low-cost carbon black (CB) and ionic liquid (IL) matrix to modify the surface of pencil graphite electrodes (PGE) in order to quantify DIC in raw materials, intermediates, and final products, as well as in stability assays of tablets. The proposed method using CB+IL/PGE displayed good recovery (99.4%) as well as limits of detection (LOD) of 0.08 µmol L-1 and limits of quantification (LOQ) of 0.28 µmol L-1. CB+IL/PGE response was five times greater than the unmodified PGE. CB+IL-PGE stands as an interesting alternative for DIC assessment in different pharmaceutical samples.
Collapse
Affiliation(s)
| | | | | | - Douglas Vieira Thomaz
- Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO 74690-970, Brazil.
| | | | - Luane Ferreira Garcia
- Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO 74690-970, Brazil.
| | | | | | - Nara Ballaminut
- Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO 74690-970, Brazil.
| | - Eric de Souza Gil
- Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO 74690-970, Brazil.
| |
Collapse
|
13
|
Minelli C, Bartczak D, Peters R, Rissler J, Undas A, Sikora A, Sjöström E, Goenaga-Infante H, Shard AG. Sticky Measurement Problem: Number Concentration of Agglomerated Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4927-4935. [PMID: 30869903 DOI: 10.1021/acs.langmuir.8b04209] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Measuring the number concentration of colloidal nanoparticles (NPs) is critical for assessing reproducibility, enabling compliance with regulation, and performing risk assessments of NP-enabled products. For nanomedicines, their number concentration directly relates to their dose. However, the lack of relevant reference materials and established traceable measurement approaches make the validation of methods for NP number concentration difficult. Furthermore, commercial products often exhibit agglomeration, but guidelines for dealing with nonideal samples are scarce. We have compared the performance of five benchtop measurement methods for the measurement of colloidal number concentration in the presence of different levels of agglomeration. The methods are UV-visible spectroscopy, differential centrifugal sedimentation, dynamic light scattering, particle tracking analysis, and single-particle inductively coupled plasma mass spectrometry. We find that both ensemble and particle-by-particle methods are in close agreement for monodisperse NP samples and three methods are within 20% agreement for agglomerated samples. We discuss the sources of measurement uncertainties, including how particle agglomeration affects measurement results. This work is a first step toward validation and expansion of the toolbox of methods available for the measurement of real-world NP products.
Collapse
Affiliation(s)
- Caterina Minelli
- National Physical Laboratory , Hampton Road , Teddington TW11 0LW , U.K
| | | | - Ruud Peters
- RIKILT-Wageningen University & Research , Wageningen 6700 AE , The Netherlands
| | - Jenny Rissler
- Bioscience and Materials , RISE Research Institutes of Sweden , Scheelevägen 27 , Lund 223-63 , Sweden
| | - Anna Undas
- RIKILT-Wageningen University & Research , Wageningen 6700 AE , The Netherlands
| | - Aneta Sikora
- National Physical Laboratory , Hampton Road , Teddington TW11 0LW , U.K
| | - Eva Sjöström
- Bioscience and Materials , RISE Research Institutes of Sweden , Scheelevägen 27 , Lund 223-63 , Sweden
| | | | - Alexander G Shard
- National Physical Laboratory , Hampton Road , Teddington TW11 0LW , U.K
| |
Collapse
|
14
|
Schavkan A, Gollwitzer C, Garcia-Diez R, Krumrey M, Minelli C, Bartczak D, Cuello-Nuñez S, Goenaga-Infante H, Rissler J, Sjöström E, Baur GB, Vasilatou K, Shard AG. Number Concentration of Gold Nanoparticles in Suspension: SAXS and spICPMS as Traceable Methods Compared to Laboratory Methods. NANOMATERIALS 2019; 9:nano9040502. [PMID: 30939772 PMCID: PMC6523170 DOI: 10.3390/nano9040502] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 11/16/2022]
Abstract
The industrial exploitation of high value nanoparticles is in need of robust measurement methods to increase the control over product manufacturing and to implement quality assurance. InNanoPart, a European metrology project responded to these needs by developing methods for the measurement of particle size, concentration, agglomeration, surface chemistry and shell thickness. This paper illustrates the advancements this project produced for the traceable measurement of nanoparticle number concentration in liquids through small angle X-ray scattering (SAXS) and single particle inductively coupled plasma mass spectrometry (spICPMS). It also details the validation of a range of laboratory methods, including particle tracking analysis (PTA), dynamic light scattering (DLS), differential centrifugal sedimentation (DCS), ultraviolet visible spectroscopy (UV-vis) and electrospray-differential mobility analysis with a condensation particle counter (ES-DMA-CPC). We used a set of spherical gold nanoparticles with nominal diameters between 10 nm and 100 nm and discuss the results from the various techniques along with the associated uncertainty budgets.
Collapse
Affiliation(s)
| | | | - Raul Garcia-Diez
- Physikalisch⁻Technische Bundesanstalt (PTB), 10587 Berlin, Germany.
| | - Michael Krumrey
- Physikalisch⁻Technische Bundesanstalt (PTB), 10587 Berlin, Germany.
| | | | | | | | | | - Jenny Rissler
- RISE Research Institutes of Sweden AB (SP), 11428 Stockholm, Sweden.
| | - Eva Sjöström
- RISE Research Institutes of Sweden AB (SP), 11428 Stockholm, Sweden.
| | - Guillaume B Baur
- Federal Institute of Metrology (METAS), 3003 Bern-Wabern, Switzerland.
| | | | | |
Collapse
|
15
|
Establishing SI-Traceability of Nanoparticle Size Values Measured with Line-Start Incremental Centrifugal Liquid Sedimentation. SEPARATIONS 2019. [DOI: 10.3390/separations6010015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Line-start incremental centrifugal liquid sedimentation (disc-CLS) is a powerful technique to determine particle size based on the principles of Stokes’ law. As most input quantities of the Stokes equation cannot be easily determined for typical instruments used for this method, an alternative method which depends on calibrating the sedimentation time scale with reference particles has become common practice. Unfortunately, most of these calibration materials (calibrants) come with limited information regarding their metrological reliability (e.g., lack of measurement uncertainties and traceability statements, incomplete measurand definitions). As a consequence, routine particle size results obtained by disc-CLS are mostly only traceable to the calibrant used, and effective comparisons can only be made for those results originating from measurements performed with the same types of calibrants. In this study, we discuss the concept of metrological traceability and demonstrate that particle size results obtained by disc-CLS can be traceable to the ultimate metrological reference, i.e., the unit of length in the International System of Units (SI), the meter. Using the example of two colloidal silica certified reference materials, we describe how laboratories can realize metrological traceability to the SI by simplifying complex traceability networks.
Collapse
|
16
|
Standard characterisation method for the granulometric state of intensely dispersed pigments and fillers based on an interlaboratory performance study. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.07.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|