1
|
Hernández Becerra E, Quinchia J, Castro C, Orozco J. Light-Triggered Polymersome-Based Anticancer Therapeutics Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:836. [PMID: 35269324 PMCID: PMC8912464 DOI: 10.3390/nano12050836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/25/2023]
Abstract
Polymersomes are biomimetic cell membrane-like model structures that are self-assembled stepwise from amphiphilic copolymers. These polymeric (nano)carriers have gained the scientific community's attention due to their biocompatibility, versatility, and higher stability than liposomes. Their tunable properties, such as composition, size, shape, and surface functional groups, extend encapsulation possibilities to either hydrophilic or hydrophobic cargoes (or both) and their site-specific delivery. Besides, polymersomes can disassemble in response to different stimuli, including light, for controlling the "on-demand" release of cargo that may also respond to light as photosensitizers and plasmonic nanostructures. Thus, polymersomes can be spatiotemporally stimulated by light of a wide wavelength range, whose exogenous response may activate light-stimulable moieties, enhance the drug efficacy, decrease side effects, and, thus, be broadly employed in photoinduced therapy. This review describes current light-responsive polymersomes evaluated for anticancer therapy. It includes light-activable moieties' features and polymersomes' composition and release behavior, focusing on recent advances and applications in cancer therapy, current trends, and photosensitive polymersomes' perspectives.
Collapse
Affiliation(s)
- Elisa Hernández Becerra
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (E.H.B.); (J.Q.)
| | - Jennifer Quinchia
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (E.H.B.); (J.Q.)
| | - Cristina Castro
- Engineering School, Pontificia Bolivariana University, Bloque 11, Cq. 1 No. 70-01, Medellín 050004, Colombia;
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (E.H.B.); (J.Q.)
| |
Collapse
|
2
|
Guo C, Yuan H, Zhang Y, Yin T, He H, Gou J, Tang X. Asymmetric polymersomes, from the formation of asymmetric membranes to the application on drug delivery. J Control Release 2021; 338:422-445. [PMID: 34496272 DOI: 10.1016/j.jconrel.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022]
Abstract
Nano drug delivery systems have attracted researchers' growing attention and are gradually emerging into the public views. More and more nano-formulations are being approved for marketing or clinical use, representing the field's booming development. Copolymer self-assembly systems such as micelles, nanoparticles, polymersomes occupy a prominent position in the field of nano-drug delivery carriers. Among them, polymersomes, unlike micelles or nanoparticles, resemble liposomes' structure and possess large internal hollow hydrophilic reservoirs, allowing them to carry hydrophilic drugs. Nevertheless, their insufficient drug loading efficiency and unruly self-assembly morphology have somewhat constrained their applications. Especially for the delivery of biomacromolecule such as peptides, the encapsulation efficiency is always considered to be a formidable obstacle, even if the enormous hydrophilic core would render the polymersomes to have considerable potential in this regard. Reassuringly, the emergence of asymmetric polymersomes holds the prospect of solving this problem. With the development of synthetic technology and a deeper understanding of the self-assembly process, the asymmetric polymersomes which are with different inner and outer shell composition have been gradually recognized by researchers. It has made possible elevated drug loading, more controllable assembly processes and release performance. The internal hydrophilic blocks different from the outer shell could be engineered to have a more remarkable affinity to the cargos or could contain a non-watery aqueous phase to enable the thermodynamically preferred encapsulation of cargos, which would allow for a substantial improvement in drug encapsulation efficiency compared to the conventional approach. In this paper, we aim to deepen the understanding to asymmetric polymersomes and lay the foundation for the development of this field by describing four main elements: the mechanism of their preparation and asymmetric membrane formation process, the characterization of asymmetric membranes, the efficient drug loading, and the special stimulus-responsive release mechanism.
Collapse
Affiliation(s)
- Chen Guo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haoyang Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
3
|
Hong Z, Xiao N, Li L, Xie X. Investigation of nanoemulsion interfacial properties: A mesoscopic simulation. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Li S, Li K, Xu Q, Wang Y, Yu C, Zhou Y. Solution self-assembly behavior of rod-alt-coil alternating copolymers via simulations. Phys Chem Chem Phys 2019; 21:25148-25157. [DOI: 10.1039/c9cp05577k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-assembly behaviors of rod-alt-coil alternating copolymers were systematically investigated by employing dissipative particle dynamics simulations.
Collapse
Affiliation(s)
- Shanlong Li
- School of Chemistry & Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Ke Li
- School of Chemistry & Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Qingsong Xu
- School of Chemistry & Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Yuling Wang
- School of Chemistry & Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Chunyang Yu
- School of Chemistry & Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Yongfeng Zhou
- School of Chemistry & Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
| |
Collapse
|
6
|
Wang H, Tang X, Eike DM, Larson RG, Koenig PH. Scission Free Energies for Wormlike Surfactant Micelles: Development of a Simulation Protocol, Application, and Validation for Personal Care Formulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1564-1573. [PMID: 29244513 DOI: 10.1021/acs.langmuir.7b03552] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a scheme to calculate wormlike micelle scission free energies from a potential of mean force (PMF) derived from a weighted histogram analysis method (WHAM) applied to coarse grained dissipative particle dynamics (DPD) simulations. In contrast to previous related work, we use a specially chosen external potential based on a reaction coordinate that reversibly drives surfactants out of the nascent scission location. For the application to a model body wash formulation, we predict how addition of NaCl and small molecules such as perfume raw materials (PRMs) affect scission energies. The results show qualitative agreement and correct trends compared to recently determined scission energies for the same system; however, a more rigorous parametrization of the underlying DPD potential is required for quantitative agreement.
Collapse
Affiliation(s)
- Huan Wang
- University of Cincinnati Simulation Center , 2728 Vine Street, Cincinnati, Ohio 45220, United States
| | - Xueming Tang
- Department of Chemical Engineering, 2800 Plymouth Road, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - David M Eike
- Computational Chemistry, Modeling and Simulation, The Procter & Gamble Company , 8611 Beckett Road, West Chester, Ohio 45069, United States
| | - Ronald G Larson
- Department of Chemical Engineering, 2800 Plymouth Road, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Peter H Koenig
- Computational Chemistry, Modeling and Simulation, The Procter & Gamble Company , 8611 Beckett Road, West Chester, Ohio 45069, United States
| |
Collapse
|