1
|
Machin JM, Kalli AC, Ranson NA, Radford SE. Protein-lipid charge interactions control the folding of outer membrane proteins into asymmetric membranes. Nat Chem 2023; 15:1754-1764. [PMID: 37710048 PMCID: PMC10695831 DOI: 10.1038/s41557-023-01319-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
Biological membranes consist of two leaflets of phospholipid molecules that form a bilayer, each leaflet comprising a distinct lipid composition. This asymmetry is created and maintained in vivo by dedicated biochemical pathways, but difficulties in creating stable asymmetric membranes in vitro have restricted our understanding of how bilayer asymmetry modulates the folding, stability and function of membrane proteins. In this study, we used cyclodextrin-mediated lipid exchange to generate liposomes with asymmetric bilayers and characterize the stability and folding kinetics of two bacterial outer membrane proteins (OMPs), OmpA and BamA. We found that excess negative charge in the outer leaflet of a liposome impedes their insertion and folding, while excess negative charge in the inner leaflet accelerates their folding relative to symmetric liposomes with the same membrane composition. Using molecular dynamics, mutational analysis and bioinformatics, we identified a positively charged patch critical for folding and stability. These results rationalize the well-known 'positive-outside' rule of OMPs and suggest insights into the mechanisms that drive OMP folding and assembly in vitro and in vivo.
Collapse
Affiliation(s)
- Jonathan M Machin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Antreas C Kalli
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
2
|
Felsztyna I, Perillo MA, Clop EM. Nanoarchitectonic approaches for measuring the catalytic behavior of a membrane anchored enzyme. From Langmuir-Blodgett to a novel Langmuir-Schaefer based nanofilm building device. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184177. [PMID: 37225031 DOI: 10.1016/j.bbamem.2023.184177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/22/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Self-organized lipid monolayers at the air-water interface (Langmuir films, LF) are commonly used for measuring the catalytic properties of membrane-bound enzymes. This methodology allows to provide a consistent flat topography molecular density, packing defects and thickness. The aim of the present work was to show the methodological advantages of using the horizontal transfer method (Langmuir-Schaefer) with respect to the vertical transfer method (Langmuir-Blodgett) when mounting a device to measure catalytic activity of membrane enzymes. Based on the results obtained we can conclude that it is possible to prepare stable Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) films from Bovine Erythrocyte Membranes (BEM) preserving the catalytic activity of its native Acetylcholinesterase (BEA). In comparison, the LS films showed Vmax values more similar to the enzyme present in the vesicles of natural membranes. In addition, it was much easier to produce large amounts of transferred areas with the horizontal transfer methodology. It was possible to decrease the time required to mount an assay with numerous activity points, such as building activity curves as a function of substrate concentration. The present results show that LSBEM provides a proof of concept for the development of biosensors based on transferred purified membrane for the screening of new products acting on an enzyme embedded on its natural milieu. In the case of BEA, the application of these enzymatic sensors could have medical interest, providing drug screening tools for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Iván Felsztyna
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina; CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
| | - María A Perillo
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina; CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
| | - Eduardo M Clop
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina; CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina.
| |
Collapse
|
3
|
Gong H, Hu X, Zhang L, Fa K, Liao M, Liu H, Fragneto G, Campana M, Lu JR. How do antimicrobial peptides disrupt the lipopolysaccharide membrane leaflet of Gram-negative bacteria? J Colloid Interface Sci 2023; 637:182-192. [PMID: 36701864 DOI: 10.1016/j.jcis.2023.01.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/24/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
HYPOTHESIS It is widely regarded that antimicrobial peptides (AMPs) kill bacteria by physically disrupting microbial membranes and causing cytoplasmic leakage, but it remains unclear how AMPs disrupt the outer membrane (OM) of Gram-negative bacteria (GNB) and then compromise the inner membrane. We hypothesise that different AMPs impose different structural disruptions, with direct implications to their antimicrobial efficacies. EXPERIMENTS The antimicrobial activities of three typical AMPs, including the designed short AMP, G3, and two natural AMPs, melittin and LL37, against E. coli and their haemolytic activities were studied. Lipopolysaccharide (LPS) and anionic di-palmitoyl phosphatidyl glycerol (DPPG) monolayer models were constructed to mimic the outer membrane and inner membrane leaflets of Gram-negative bacteria. The binding and penetration of AMPs to the model lipid monolayers were systematically studied by neutron reflection via multiple H/D contrast variations. FINDING G3 has relatively high antimicrobial activity, low cytotoxicity, and high proteolytic stability, whilst melittin has significant haemolysis and LL37 has weaker antimicrobial activity. G3 could rapidly lyse LPS and DPPG monolayers within 10-20 min. In contrast, melittin was highly active against the LPS membrane, but the dynamic process lasted up to 80 min, with excessive stacking in the OM. LL37 caused rather weak destruction to LPS and DPPG monolayers, leading to massive adsorption on the membrane surface without penetrating the lipid tail region. These findings demonstrate that the rationally designed AMP G3 was well optimised to impose most effective destruction to bacterial membranes, consistent with its highest bactericidal activity. These different interfacial structural features associated with AMP binding shed light on the future development of active and biocompatible AMPs for infection and wound treatments.
Collapse
Affiliation(s)
- Haoning Gong
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xuzhi Hu
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Lin Zhang
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Ke Fa
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Mingrui Liao
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Huayang Liu
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | | | - Mario Campana
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Jian Ren Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
4
|
Sharma P, Vaiwala R, Parthasarathi S, Patil N, Verma A, Waskar M, Raut JS, Basu JK, Ayappa KG. Interactions of Surfactants with the Bacterial Cell Wall and Inner Membrane: Revealing the Link between Aggregation and Antimicrobial Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15714-15728. [PMID: 36472987 DOI: 10.1021/acs.langmuir.2c02520] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surfactants with their intrinsic ability to solubilize lipid membranes are widely used as antibacterial agents, and their interactions with the bacterial cell envelope are complicated by their differential aggregation tendencies. We present a combined experimental and molecular dynamics investigation to unravel the molecular basis for the superior antimicrobial activity and faster kill kinetics of shorter-chain fatty acid surfactant, laurate, when compared with the longer-chain surfactants studied in contact time assays with live Escherichia coli (E. coli). From all-atom molecular dynamics simulations, translocation events across peptidoglycan were the highest for laurate followed by sodium dodecyl sulfate, myristate, palmitate, oleate, and stearate. The translocation kinetics were positively correlated with the critical micellar concentration, which determined the free monomer surfactant concentration available for translocation across peptidoglycan. Interestingly, aggregates showed a lower propensity to translocate across the peptidoglycan layer and longer translocation times were observed for oleate, thereby revealing an intrinsic sieving property of the bacterial cell wall. Molecular dynamics simulations with surfactant-incorporated bacterial inner membranes revealed the greatest hydrophobic mismatch and membrane thinning in the presence of laurate when compared with the other surfactants. The enhanced antimicrobial efficacy of laurate over oleate was further verified by experiments with giant unilamellar vesicles, and electroporation molecular dynamics simulations revealed greater inner membrane poration tendency in the presence of laurate when compared with the longer-chain surfactants. Our study provides molecular insights into surfactant translocation across peptidoglycan and chain length-induced structural disruption of the inner membrane, which correlate with contact time kill efficacies observed as a function of chain length with E. coli. The insights gained from our study uncover unexplored barrier properties of the bacterial cell envelope to rationalize the development of antimicrobial formulations and therapeutics.
Collapse
Affiliation(s)
- Pradyumn Sharma
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Rakesh Vaiwala
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | | | - Nivedita Patil
- Unilever Research and Development, Bangalore 560066, India
| | - Anant Verma
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Morris Waskar
- Unilever Research and Development, Bangalore 560066, India
| | - Janhavi S Raut
- Unilever Research and Development, Bangalore 560066, India
| | - Jaydeep Kumar Basu
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
5
|
Schiaffarino O, Valdivieso González D, García-Pérez IM, Peñalva DA, Almendro-Vedia VG, Natale P, López-Montero I. Mitochondrial membrane models built from native lipid extracts: Interfacial and transport properties. Front Mol Biosci 2022; 9:910936. [PMID: 36213125 PMCID: PMC9538489 DOI: 10.3389/fmolb.2022.910936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
The mitochondrion is an essential organelle enclosed by two membranes whose functionalities depend on their very specific protein and lipid compositions. Proteins from the outer mitochondrial membrane (OMM) are specialized in mitochondrial dynamics and mitophagy, whereas proteins of the inner mitochondrial membrane (IMM) have dedicated functions in cellular respiration and apoptosis. As for lipids, the OMM is enriched in glycerophosphatidyl choline but cardiolipin is exclusively found within the IMM. Though the lipid topology and distribution of the OMM and IMM are known since more than four decades, little is known about the interfacial and dynamic properties of the IMM and OMM lipid extracts. Here we build monolayers, supported bilayers and giant unilamellar vesicles (GUVs) of native OMM and IMM lipids extracts from porcine heart. Additionally, we perform a comparative analysis on the interfacial, phase immiscibility and mechanical properties of both types of extract. Our results show that IMM lipids form more expanded and softer membranes than OMM lipids, allowing a better understanding of the physicochemical and biophysical properties of mitochondrial membranes.
Collapse
Affiliation(s)
- Olivia Schiaffarino
- Departamento Química Física, Universidad Complutense de Madrid, Madrid, Spain
| | - David Valdivieso González
- Departamento Química Física, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid, Spain
| | | | - Daniel A. Peñalva
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), ConsejoNacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Víctor G. Almendro-Vedia
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid, Spain
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Paolo Natale
- Departamento Química Física, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid, Spain
- *Correspondence: Iván López-Montero, ; Paolo Natale,
| | - Iván López-Montero
- Departamento Química Física, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Iván López-Montero, ; Paolo Natale,
| |
Collapse
|
6
|
Luong HX, Bui HTP, Tung TT. Application of the All-Hydrocarbon Stapling Technique in the Design of Membrane-Active Peptides. J Med Chem 2022; 65:3026-3045. [PMID: 35112864 DOI: 10.1021/acs.jmedchem.1c01744] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The threats of drug resistance and new emerging pathogens have led to an urgent need to develop alternative treatment therapies. Recently, considerable research efforts have focused on membrane-active peptides (MAPs), a category of peptides in drug discovery with antimicrobial, anticancer, and cell penetration activities that have demonstrated their potential to be multifunctional agents. Nonetheless, natural MAPs have encountered various disadvantages, which mainly include poor bioavailability, the lack of a secondary structure in short peptides, and high production costs for long peptide sequences. Hence, an "all-hydrocarbon stapling system" has been applied to these peptides and proven to effectively stabilize the helical conformations, improving proteolytic resistance and increasing both the potency and the cell permeability. In this review, we summarized and categorized the advances made using this powerful technique in the development of stapled MAPs. Furthermore, outstanding issues and suggestions for future design within each subcategory were thoroughly discussed.
Collapse
Affiliation(s)
- Huy Xuan Luong
- Faculty of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam.,PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Vietnam
| | | | - Truong Thanh Tung
- Faculty of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam.,PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Vietnam
| |
Collapse
|
7
|
Carey AB, Ashenden A, Köper I. Model architectures for bacterial membranes. Biophys Rev 2022; 14:111-143. [PMID: 35340604 PMCID: PMC8921416 DOI: 10.1007/s12551-021-00913-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
The complex composition of bacterial membranes has a significant impact on the understanding of pathogen function and their development towards antibiotic resistance. In addition to the inherent complexity and biosafety risks of studying biological pathogen membranes, the continual rise of antibiotic resistance and its significant economical and clinical consequences has motivated the development of numerous in vitro model membrane systems with tuneable compositions, geometries, and sizes. Approaches discussed in this review include liposomes, solid-supported bilayers, and computational simulations which have been used to explore various processes including drug-membrane interactions, lipid-protein interactions, host-pathogen interactions, and structure-induced bacterial pathogenesis. The advantages, limitations, and applicable analytical tools of all architectures are summarised with a perspective for future research efforts in architectural improvement and elucidation of resistance development strategies and membrane-targeting antibiotic mechanisms. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-021-00913-7.
Collapse
Affiliation(s)
- Ashley B. Carey
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| | - Alex Ashenden
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| | - Ingo Köper
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| |
Collapse
|
8
|
Hsieh MK, Yu Y, Klauda JB. All-Atom Modeling of Complex Cellular Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3-17. [PMID: 34962814 DOI: 10.1021/acs.langmuir.1c02084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell membranes are composed of a variety of lipids and proteins where they interact with each other to fulfill their roles. The first step in modeling these interactions in molecular simulations is to have reliable mimetics of the membrane's lipid environment. This Feature Article presents our recent efforts to model complex cellular membranes using all-atom force fields. A short review of the CHARMM36 (C36) lipid force field and its recent update to incorporate the long-range dispersion is presented. Key examples of model membranes mimicking various species and organelles are given. These include single-celled organisms such as bacteria (E. coli., chlamydia, and P. aeruginosa) and yeast (plasma membrane, endoplasmic reticulum, and trans-Golgi network) and more advanced ones such as plants (soybean and Arabidopsis thaliana) and mammals (ocular lens, stratum corneum, and peripheral nerve myelin). Leaflet asymmetry in composition has also been applied to some of these models. With the increased lipid diversity in the C36 lipid FF, these complex models can better reflect the structural, mechanical, and dynamic properties of realistic membranes and open an opportunity to study biological processes involving other molecules.
Collapse
|
9
|
Sun S, Xia Y, Liu J, Dou Y, Yang K, Yuan B, Kang Z. Real-time monitoring the interfacial dynamic processes at model cell membranes: Taking cell penetrating peptide TAT as an example. J Colloid Interface Sci 2021; 609:707-717. [PMID: 34839914 DOI: 10.1016/j.jcis.2021.11.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 11/16/2022]
Abstract
A real-time and molecule-level monitoring of the interfacial dynamic interactions between molecules and a cell membrane is of vital importance. Herein, taking TAT, one of the most representative cell penetrating peptides, as an example, a photo-voltage transient technique and a dynamic giant bistratal vesicle (GBV) leakage method were combined with the traditional giant unilamellar vesicle (GUV) leakage assays, to provide a molecule-level understanding of the dynamic membrane interaction process performed in a low ionic strength and neutral pH condition. The photo-voltage test based on supported phospholipid bilayers showed a quick disturbance (<1 min) followed by a continuous reconstruction of the membrane by peptides, leading to a slight destruction (at TAT concentrations lower than 1 μg mL-1, i.e., 0.64 μM) or strong damage (e.g. at 10 μg mL-1, i.e., 6.4 μM) of the bilayer structure. The GUV/GBV leakage assays further demonstrated the TAT-induced membrane deformation and transmembrane diffusion of dyes, which occurred in an immediate, linear, and TAT-concentration dependent manner. Moreover, the flux of dye across the substrate-immobilized membranes was approximately three times of that across the substrate-free ones. This work gives information on time and molecular mechanism of the TAT-membrane interactions, demonstrates the different permeabilizing effects of TAT on immobilized and free membranes. Overall, it provides useful strategies to investigate the nano-bio interfacial interactions in a simple, global and real-time way.
Collapse
Affiliation(s)
- Shuqing Sun
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yu Xia
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Jiaojiao Liu
- College of Physics and Electronic Engineering & Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| | - Yujiang Dou
- School of Electronic and Information Engineer, Soochow University, Suzhou 215006, Jiangsu, China; Suzhou Weimu Intelligent System Co. Ltd., Suzhou 215163, Jiangsu, China.
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China.
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China; Institute of Advanced Materials, Northeast Normal University, 5268 Renmin Street, Changchun 130024, Jilin, China.
| |
Collapse
|
10
|
Médard J, Sun X, Pinson J, Li D, Mangeney C, Michel JP. Electrografting and Langmuir-Blodgett: Covalently Bound Nanometer-Thick Ordered Films on Graphite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12539-12547. [PMID: 34677986 DOI: 10.1021/acs.langmuir.1c01723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present two different molecular organizations obtained from octadecylamine (ODA) molecules on a highly oriented pyrolytic graphite (HOPG) surface: (i) self-organized physisorbed ODA molecules lying flat on the surface and (ii) a strongly electrografted compact crystalline monolayer of ODA molecules standing up on the surface. This new structure is obtained by combining the Langmuir-Blodgett transfer of an ODA Langmuir film onto HOPG with oxidative electrografting. The presence of an organic film on HOPG is characterized by attenuated total reflectance-infrared spectroscopy and Raman spectroscopy, while atomic force microscopy and scanning tunneling microscopy allow the observation of the two molecular organizations with adsorbed molecules lying flat on HOPG or strongly grafted in an upright position on the HOPG surface. Interestingly, the second molecular organization preserves a hexagonal symmetry and its lattice parameters are intermediate between those of ODA Langmuir films and that of the HOPG underlying surface. The functionalization of surfaces with organic films is a major issue in the design of sensors with biomedical applications or organic electronics and energy storage devices and these structures may find applications in these fields.
Collapse
Affiliation(s)
- Jérôme Médard
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - Xiaonan Sun
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - Jean Pinson
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - Da Li
- Université de Paris, UMR 8601, CNRS, 45 rue des Saints Pères, 75006 Paris, France
| | - Claire Mangeney
- Université de Paris, UMR 8601, CNRS, 45 rue des Saints Pères, 75006 Paris, France
| | - Jean-Philippe Michel
- Université Paris Saclay, Institut Galien Paris Saclay, CNRS, UMR 8612, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry, France
| |
Collapse
|
11
|
A real-time and in-situ monitoring of the molecular interactions between drug carrier polymers and a phospholipid membrane. Colloids Surf B Biointerfaces 2021; 209:112161. [PMID: 34700114 DOI: 10.1016/j.colsurfb.2021.112161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 11/20/2022]
Abstract
The dynamic interactions between drug carrier molecules and a cell membrane can not be ignored in their clinical use. Here a simple, label-free and non-invasive approach, photo-voltage transient method, combined with the atomic force microscopy, dynamic giant unilamellar vesicle leakage assay and cytotoxicity method, was employed for a real-time monitoring of the interaction process. Two representative polymer molecules, polyoxyethylene (35) lauryl ether (Brij35) and polyvinylpyrrolidone (PVPk30), were taken as examples to interact with a phospholipid bilayer membrane in a low ionic strength and neutral pH condition. Brij35 demonstrated an adsorption-accumulation-permeabilization dominated process under the modulation of polymer concentration in the solution. In contrast, PVPk30 performed a dynamic balance between adsorption-desorption of the molecules and/or permeabilization-resealing of the membrane. Such difference explains the high and low cytotoxicity of them, respectively, in the living cell tests. Briefly, through combining the photo-voltage approach with conventional fluorescent microscopy method, this work demonstrates new ideas on the time and membrane actions of polymer surfactants which should be taken into account for their biomedical applications.
Collapse
|
12
|
Studying the surfaces of bacteria using neutron scattering: finding new openings for antibiotics. Biochem Soc Trans 2021; 48:2139-2149. [PMID: 33005925 PMCID: PMC7609035 DOI: 10.1042/bst20200320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022]
Abstract
The use of neutrons as a scattering probe to investigate biological membranes has steadily grown in the past three decades, shedding light on the structure and behaviour of this ubiquitous and fundamental biological barrier. Meanwhile, the rise of antibiotic resistance has catalysed a renewed interest in understanding the mechanisms underlying the dynamics of antibiotics interaction with the bacterial cell envelope. It is widely recognised that the key reason behind the remarkable success of Gram-negative pathogens in developing antibiotic resistance lies in the effectiveness of their outer membrane (OM) in defending the cell from antibacterial compounds. Critical to its function, the highly asymmetric lipid distribution between the inner and outer bilayer leaflets of the OM, adds an extra level of complexity to the study of this crucial defence barrier. Here we review the opportunities offered by neutron scattering techniques, in particular reflectometry, to provide structural information on the interactions of antimicrobials with in vitro models of the OM. The differential sensitivity of neutrons towards hydrogen and deuterium makes them a unique probe to study the structure and behaviour of asymmetric membranes. Molecular-level understanding of the interactions between antimicrobials and the Gram-negative OM provides valuable insights that can aid drug development and broaden our knowledge of this critically important biological barrier.
Collapse
|
13
|
The effect of acyl chain length and saturation on the interactions of pirarubicin with phosphatidylethanolamines in 2D model urothelial cancer cell membranes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Dou Y, Li W, Xia Y, Chen Z, Wu Z, Ge Y, Lin Z, Zhang M, Yang K, Yuan B, Kang Z. Photo-Voltage Transients for Real-Time Analysis of the Interactions between Molecules and Membranes. ACS APPLIED BIO MATERIALS 2020. [DOI: 10.1021/acsabm.0c01180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yujiang Dou
- College of Electronics and Information, Soochow University, Suzhou 215006, Jiangsu, China
- Suzhou Weimu Intelligent System Co. Ltd., Suzhou 215163, Jiangsu, China
| | - Wenwen Li
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yu Xia
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhonglan Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhenyu Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yuke Ge
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhao Lin
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Mengling Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Bing Yuan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
- Institute of Advanced Materials, Northeast Normal University, 5268 Renmin Street, Changchun 130024, Jilin, China
| |
Collapse
|
15
|
Sharma P, Parthasarathi S, Patil N, Waskar M, Raut JS, Puranik M, Ayappa KG, Basu JK. Assessing Barriers for Antimicrobial Penetration in Complex Asymmetric Bacterial Membranes: A Case Study with Thymol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8800-8814. [PMID: 32609530 DOI: 10.1021/acs.langmuir.0c01124] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The bacterial cell envelope is a complex multilayered structure evolved to protect bacteria in hostile environments. An understanding of the molecular basis for the interaction and transport of antibacterial therapeutics with the bacterial cell envelope will enable the development of drug molecules to combat bacterial infections and suppress the emergence of drug-resistant strains. Here we report the successful creation of an in vitro supported lipid bilayer (SLB) platform of the outer membrane (OM) of E. coli, an archetypical Gram-negative bacterium, containing the full smooth lipopolysaccharide (S-LPS) architecture of the membrane. Using this platform, we performed fluorescence correlation spectroscopy (FCS) in combination with molecular dynamics (MD) simulations to measure lipid diffusivities and provide molecular insights into the transport of natural antimicrobial agent thymol. Lipid diffusivities measured on symmetric supported lipid bilayers made up of inner membrane lipids show a distinct increase in the presence of thymol as also corroborated by MD simulations. However, lipid diffusivities in the asymmetric OM consisting of only S-LPS are invariant upon exposure to thymol. Increasing the phospholipid content in the LPS-containing outer leaflet improved the penetration toward thymol as reflected in slightly higher relative diffusivity changes in the inner leaflet when compared with the outer leaflet. Free-energy computations reveal the presence of a barrier (∼6 kT) only in the core-saccharide region of the OM for the translocation of thymol while the external O-antigen part is easily traversed. In contrast, thymol spontaneously inserts into the inner membrane. In addition to providing leaflet-resolved penetration barriers in bacterial membranes, we also assess the ability of small molecules to penetrate various membrane components. With rising bacterial resistance, our study opens up the possibility of screening potential antimicrobial drug candidates using these realistic model platforms for Gram-negative bacteria.
Collapse
Affiliation(s)
| | | | - Nivedita Patil
- Unilever RD Bangalore, 64 Main Road, Whitefield, Bangalore 560066, India
| | - Morris Waskar
- Unilever RD Bangalore, 64 Main Road, Whitefield, Bangalore 560066, India
| | - Janhavi S Raut
- Unilever RD Bangalore, 64 Main Road, Whitefield, Bangalore 560066, India
| | - Mrinalini Puranik
- Unilever RD Bangalore, 64 Main Road, Whitefield, Bangalore 560066, India
| | | | | |
Collapse
|
16
|
Balhaddad AA, Garcia IM, Ibrahim MS, Rolim JPML, Gomes EAB, Martinho FC, Collares FM, Xu H, Melo MAS. Prospects on Nano-Based Platforms for Antimicrobial Photodynamic Therapy Against Oral Biofilms. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 38:481-496. [PMID: 32716697 DOI: 10.1089/photob.2020.4815] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective: This review clusters the growing field of nano-based platforms for antimicrobial photodynamic therapy (aPDT) targeting pathogenic oral biofilms and increase interactions between dental researchers and investigators in many related fields. Background data: Clinically relevant disinfection of dental tissues is difficult to achieve with aPDT alone. It has been found that limited penetrability into soft and hard dental tissues, diffusion of the photosensitizers, and the small light absorption coefficient are contributing factors. As a result, the effectiveness of aPDT is reduced in vivo applications. To overcome limitations, nanotechnology has been implied to enhance the penetration and delivery of photosensitizers to target microorganisms and increase the bactericidal effect. Materials and methods: The current literature was screened for the various platforms composed of photosensitizers functionalized with nanoparticles and their enhanced performance against oral pathogenic biofilms. Results: The evidence-based findings from the up-to-date literature were promising to control the onset and the progression of dental biofilm-triggered diseases such as dental caries, endodontic infections, and periodontal diseases. The antimicrobial effects of aPDT with nano-based platforms on oral bacterial disinfection will help to advance the design of combination strategies that increase the rate of complete and durable clinical response in oral infections. Conclusions: There is enthusiasm about the potential of nano-based platforms to treat currently out of the reach pathogenic oral biofilms. Much of the potential exists because these nano-based platforms use unique mechanisms of action that allow us to overcome the challenging of intra-oral and hard-tissue disinfection.
Collapse
Affiliation(s)
- Abdulrahman A Balhaddad
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Isadora M Garcia
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Salem Ibrahim
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Juliana P M L Rolim
- Department of Dentistry, Christus University Center (Unichristus), Fortaleza, Brazil
| | - Edison A B Gomes
- Department of Dentistry, Christus University Center (Unichristus), Fortaleza, Brazil
| | - Frederico C Martinho
- Endodontic Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Fabricio M Collares
- Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Hockin Xu
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Mary Anne S Melo
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Role of lipopolysaccharides and lipoteichoic acids on C-Chrysophsin-1 interactions with model Gram-positive and Gram-negative bacterial membranes. Biointerphases 2020; 15:031007. [PMID: 32456440 DOI: 10.1116/1.5130774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) are attractive as biomaterial coatings because they have broad spectrum activity against different microbes, with a low likelihood of incurring antimicrobial resistance. Direct action against the bacterial membrane is the most common mechanism of action (MOA) of AMPs, with specific MOAs dependent on membrane composition, peptide concentration, and environmental factors that include temperature. Chrysophsin-1 (CHY1) is a broad spectrum salt-tolerant AMP that is derived from a marine fish. A cysteine modification was made to the peptide to facilitate attachment to a surface, such as a biomedical device. The authors used quartz crystal microbalance with dissipation monitoring to study how temperature (23 and 37 °C) and lipid composition influence the MOA of cysteine-modified peptide (C-CHY1) with model membranes comprised of supported lipid bilayers (SLBs). These two temperatures were used so that the authors could better understand the differences in behavior between typical lab temperatures and physiologic conditions. The authors created model membranes that mimicked properties of Gram-negative and Gram-positive bacteria in order to understand how the mechanisms might differ for different types of bacterial systems. SLB models of Gram-positive bacterial membranes were formed using combinations of phosphatidylcholine, phosphatidylglycerol (PG), and S. aureus-derived lipoteichoic acid (LTA). SLB models of Gram-negative bacterial membranes were formed using combinations of phosphatidylethanolamine (PE), PG, and E. coli-derived lipopolysaccharides (LPS). The molecules that distinguish Gram-positive and Gram-negative membranes (LTA and LPS) have the potential to alter the MOA of C-CHY1 with the SLBs. The authors' results showed that the MOA for the Gram-positive SLBs was not sensitive to temperature, but the LTA addition did have an effect. Specifically, similar trends in frequency and dissipation changes across all overtones were observed, and the same mechanistic trends were observed in the polar plots at 23 and 37 °C. However, when LTA was added, polar plots showed an association between C-CHY1 and LTA, leading to SLB saturation. This was demonstrated by significant changes in dissipation, while the frequency (mass) was not increasing after the saturation point. For the Gram-negative SLBs, the composition did not have a significant effect on MOA, but the authors saw more differences between the two temperatures studied. The authors believe this is due to the fact that the gel-liquid crystal transition temperature of PE is 25 °C, which means that the bilayer is more rigid at 23 °C, compared to temperatures above the transition point. At 23 °C, a significant energetic shift would be required to allow for additional AMP insertion. This could be seen in the polar plots, where there was a steep slope but there was very little mass addition. At 37 °C, the membrane is more fluid and there is less of an energetic requirement for insertion. Therefore, the authors observed greater mass addition and fewer changes in dissipation. A better understanding of C-CHY1 MOA using different SLB models will allow for the more rational design of future therapeutic solutions that make use of antimicrobial peptides, including those involving biomaterial coatings.
Collapse
|
18
|
Hoyo J, Ivanova K, Torrent-Burgues J, Tzanov T. Interaction of Silver-Lignin Nanoparticles With Mammalian Mimetic Membranes. Front Bioeng Biotechnol 2020; 8:439. [PMID: 32457895 PMCID: PMC7225684 DOI: 10.3389/fbioe.2020.00439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/16/2020] [Indexed: 11/13/2022] Open
Abstract
Silver nanoparticles (AgNPs) have broad spectrum antibacterial activity, but their toxicity to human cells has raised concerns related to their use as disinfectants or coatings of medically relevant surfaces. To address this issue, NPs comprising intrinsically bactericidal and biocompatible biopolymer and Ag with high antibacterial efficacy against common pathogens and compatibility to human cells have been engineered. However, the reason for their lower toxicity compared to AgNPs has not yet been elucidated. This work studies the in vitro interaction of AgLNPs with model mammalian membranes through two approaches: (i) Langmuir films and (ii) supported planar bilayers studied by quartz crystal microbalance and atomic force spectroscopy. These approaches elucidate the interactions of AgLNPs with the model membranes indicating a prominent effect of the bioresourced lignin to facilitate the binding of AgLNPs to the mammalian membrane, without penetrating through it. This study opens a new avenue for engineering of hybrid antimicrobial biopolymer – Ag or other metal NPs with improved bactericidal effect whereas maintaining good biocompatibility.
Collapse
Affiliation(s)
- Javier Hoyo
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrasa, Spain
| | - Kristina Ivanova
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrasa, Spain
| | - Juan Torrent-Burgues
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrasa, Spain
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrasa, Spain
| |
Collapse
|
19
|
Piscidin, Fish Antimicrobial Peptide: Structure, Classification, Properties, Mechanism, Gene Regulation and Therapeutical Importance. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10068-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Guo J, Chia GW, Berezhnoy NV, Cazenave-Gassiot A, Kjelleberg S, Hinks J, Mu Y, Seviour T. Bacterial lipopolysaccharide core structures mediate effects of butanol ingress. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183150. [DOI: 10.1016/j.bbamem.2019.183150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/07/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022]
|
21
|
Li X, Smith AW. Quantifying Lipid Mobility and Peptide Binding for Gram-Negative and Gram-Positive Model Supported Lipid Bilayers. J Phys Chem B 2019; 123:10433-10440. [DOI: 10.1021/acs.jpcb.9b09709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaosi Li
- Department of Chemistry, The University of Akron, 190 Buchtel Common, Akron, Ohio 44325-3601, United States
| | - Adam W. Smith
- Department of Chemistry, The University of Akron, 190 Buchtel Common, Akron, Ohio 44325-3601, United States
| |
Collapse
|
22
|
Ortiz-Collazos S, Picciani PH, Oliveira ON, Pimentel AS, Edler KJ. Influence of levofloxacin and clarithromycin on the structure of DPPC monolayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182994. [DOI: 10.1016/j.bbamem.2019.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022]
|
23
|
Skoda MW. Recent developments in the application of X-ray and neutron reflectivity to soft-matter systems. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Lakey JH. Recent advances in neutron reflectivity studies of biological membranes. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Jefferies D, Shearer J, Khalid S. Role of O-Antigen in Response to Mechanical Stress of the E. coli Outer Membrane: Insights from Coarse-Grained MD Simulations. J Phys Chem B 2019; 123:3567-3575. [DOI: 10.1021/acs.jpcb.8b12168] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Damien Jefferies
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Jonathan Shearer
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| |
Collapse
|
26
|
N’Diaye M, Michel JP, Rosilio V. Relevance of charges and polymer mechanical stiffness in the mechanism and kinetics of formation of liponanoparticles probed by the supported bilayer model approach. Phys Chem Chem Phys 2019; 21:4306-4319. [DOI: 10.1039/c8cp06955g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Parameters controlling the mechanism and kinetics of formation of liponanoparticles are determined using supported lipid bilayer models.
Collapse
Affiliation(s)
- Marline N’Diaye
- Institut Galien Paris-Sud
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| | - Jean-Philippe Michel
- Institut Galien Paris-Sud
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| | - Véronique Rosilio
- Institut Galien Paris-Sud
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| |
Collapse
|
27
|
Physical states and thermodynamic properties of model gram-negative bacterial inner membranes. Chem Phys Lipids 2019; 218:57-64. [DOI: 10.1016/j.chemphyslip.2018.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/16/2018] [Accepted: 12/05/2018] [Indexed: 01/27/2023]
|
28
|
Distribution of mechanical stress in the Escherichia coli cell envelope. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2566-2575. [PMID: 30278180 DOI: 10.1016/j.bbamem.2018.09.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/14/2018] [Accepted: 09/26/2018] [Indexed: 01/05/2023]
Abstract
The cell envelope in Gram-negative bacteria comprises two distinct membranes with a cell wall between them. There has been a growing interest in understanding the mechanical adaptation of this cell envelope to the osmotic pressure (or turgor pressure), which is generated by the difference in the concentration of solutes between the cytoplasm and the external environment. However, it remains unexplored how the cell wall, the inner membrane (IM), and the outer membrane (OM) effectively protect the cell from this pressure by bearing the resulting surface tension, thus preventing the formation of inner membrane bulges, abnormal cell morphology, spheroplasts and cell lysis. In this study, we have used molecular dynamics (MD) simulations combined with experiments to resolve how and to what extent models of the IM, OM, and cell wall respond to changes in surface tension. We calculated the area compressibility modulus of all three components in simulations from tension-area isotherms. Experiments on monolayers mimicking individual leaflets of the IM and OM were also used to characterize their compressibility. While the membranes become softer as they expand, the cell wall exhibits significant strain stiffening at moderate to high tensions. We integrate these results into a model of the cell envelope in which the OM and cell wall share the tension at low turgor pressure (0.3 atm) but the tension in the cell wall dominates at high values (>1 atm).
Collapse
|
29
|
Rosilio V. How Can Artificial Lipid Models Mimic the Complexity of Molecule–Membrane Interactions? ACTA ACUST UNITED AC 2018. [DOI: 10.1016/bs.abl.2017.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|