1
|
Bratash O, Buhot A, Leroy L, Engel E. Optical fiber biosensors toward in vivo detection. Biosens Bioelectron 2024; 251:116088. [PMID: 38335876 DOI: 10.1016/j.bios.2024.116088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
This review takes stock of the various optical fiber-based biosensors that could be used for in vivo applications. We discuss the characteristics that biosensors must have to be suitable for such applications and the corresponding transduction modes. In particular, we focus on optical fiber biosensors based on fluorescence, evanescent wave, plasmonics, interferometry, and Raman phenomenon. The operational principles, implemented solutions, and performances are described and debated. The different sensing configurations, such as the side- and tip-based fiber biosensors, are illustrated, and their adaptation for in vivo measurements is discussed. The required implementation of multiplexed biosensing on optical fibers is shown. In particular, the use of multi-fiber assemblies, one of the most optimal configurations for multiplexed detection, is discussed. Different possibilities for multiple localized functionalizations on optical fibers are presented. A final section is devoted to the practical in vivo use of fiber-based biosensors, covering regulatory, sterilization, and packaging aspects. Finally, the trends and required improvements in this promising and emerging field are analyzed and discussed.
Collapse
Affiliation(s)
- Oleksii Bratash
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000, Grenoble, France
| | - Arnaud Buhot
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000, Grenoble, France
| | - Loïc Leroy
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000, Grenoble, France
| | - Elodie Engel
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000, Grenoble, France.
| |
Collapse
|
2
|
Sytu MRC, Cho DH, Hahm JI. Self-Assembled Block Copolymers as a Facile Pathway to Create Functional Nanobiosensor and Nanobiomaterial Surfaces. Polymers (Basel) 2024; 16:1267. [PMID: 38732737 PMCID: PMC11085100 DOI: 10.3390/polym16091267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Block copolymer (BCP) surfaces permit an exquisite level of nanoscale control in biomolecular assemblies solely based on self-assembly. Owing to this, BCP-based biomolecular assembly represents a much-needed, new paradigm for creating nanobiosensors and nanobiomaterials without the need for costly and time-consuming fabrication steps. Research endeavors in the BCP nanobiotechnology field have led to stimulating results that can promote our current understanding of biomolecular interactions at a solid interface to the never-explored size regimes comparable to individual biomolecules. Encouraging research outcomes have also been reported for the stability and activity of biomolecules bound on BCP thin film surfaces. A wide range of single and multicomponent biomolecules and BCP systems has been assessed to substantiate the potential utility in practical applications as next-generation nanobiosensors, nanobiodevices, and biomaterials. To this end, this Review highlights pioneering research efforts made in the BCP nanobiotechnology area. The discussions will be focused on those works particularly pertaining to nanoscale surface assembly of functional biomolecules, biomolecular interaction properties unique to nanoscale polymer interfaces, functionality of nanoscale surface-bound biomolecules, and specific examples in biosensing. Systems involving the incorporation of biomolecules as one of the blocks in BCPs, i.e., DNA-BCP hybrids, protein-BCP conjugates, and isolated BCP micelles of bioligand carriers used in drug delivery, are outside of the scope of this Review. Looking ahead, there awaits plenty of exciting research opportunities to advance the research field of BCP nanobiotechnology by capitalizing on the fundamental groundwork laid so far for the biomolecular interactions on BCP surfaces. In order to better guide the path forward, key fundamental questions yet to be addressed by the field are identified. In addition, future research directions of BCP nanobiotechnology are contemplated in the concluding section of this Review.
Collapse
Affiliation(s)
- Marion Ryan C. Sytu
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA
| | - David H. Cho
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA;
| | - Jong-in Hahm
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA
| |
Collapse
|
3
|
Humenik M, Winkler A, Scheibel T. Patterning of protein-based materials. Biopolymers 2020; 112:e23412. [PMID: 33283876 DOI: 10.1002/bip.23412] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 01/03/2023]
Abstract
Micro- and nanopatterning of proteins on surfaces allows to develop for example high-throughput biosensors in biomedical diagnostics and in general advances the understanding of cell-material interactions in tissue engineering. Today, many techniques are available to generate protein pattern, ranging from technically simple ones, such as micro-contact printing, to highly tunable optical lithography or even technically sophisticated scanning probe lithography. Here, one focus is on the progress made in the development of protein-based materials as positive or negative photoresists allowing micro- to nanostructured scaffolds for biocompatible photonic, electronic and tissue engineering applications. The second one is on approaches, which allow a controlled spatiotemporal positioning of a single protein on surfaces, enabled by the recent developments in immobilization techniques coherent with the sensitive nature of proteins, defined protein orientation and maintenance of the protein activity at interfaces. The third one is on progress in photolithography-based methods, which allow to control the formation of protein-repellant/adhesive polymer brushes.
Collapse
Affiliation(s)
- Martin Humenik
- Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Bayreuth, Germany
| | - Anika Winkler
- Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Bayreuth, Germany
| | - Thomas Scheibel
- Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Bayreuth, Germany.,Bayreuth Center for Colloids and Interfaces (BZKG), Universität Bayreuth, Bayreuth, Germany.,Bayreuth Center for Molecular Biosciences (BZMB), Universität Bayreuth, Bayreuth, Germany.,Bayreuth Center for Material Science (BayMAT), Universität Bayreuth, Bayreuth, Germany.,Bavarian Polymer Institute (BPI), Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
4
|
Liu X, Kumar M, Calo A, Albisetti E, Zheng X, Manning KB, Elacqua E, Weck M, Ulijn RV, Riedo E. Sub-10 nm Resolution Patterning of Pockets for Enzyme Immobilization with Independent Density and Quasi-3D Topography Control. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41780-41790. [PMID: 31609566 DOI: 10.1021/acsami.9b11844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The ability to precisely control the localization of enzymes on a surface is critical for several applications including biosensing, bionanoreactors, and single molecule studies. Despite recent advances, fabrication of enzyme patterns with resolution at the single enzyme level is limited by the lack of lithography methods that combine high resolution, compatibility with soft, polymeric structures, ease of fabrication, and high throughput. Here, a method to generate enzyme nanopatterns (using thermolysin as a model system) on a polymer surface is demonstrated using thermochemical scanning probe lithography (tc-SPL). Electrostatic immobilization of negatively charged sulfonated enzymes occurs selectively at positively charged amine nanopatterns produced by thermal deprotection of amines along the side-chain of a methacrylate-based copolymer film via tc-SPL. This process occurs simultaneously with local thermal quasi-3D topographical patterning of the same polymer, offering lateral sub-10 nm resolution, and vertical 1 nm resolution, as well as high throughput (5.2 × 104 μm2/h). The obtained single-enzyme resolution patterns are characterized by atomic force microscopy (AFM) and fluorescence microscopy. The enzyme density, the surface passivation, and the quasi-3D arbitrary geometry of these patterned pockets are directly controlled during the tc-SPL process in a single step without the need of markers or masks. Other unique features of this patterning approach include the combined single-enzyme resolution over mm2 areas and the possibility of fabricating enzymes nanogradients.
Collapse
Affiliation(s)
- Xiangyu Liu
- Tandon School of Engineering , New York University , Brooklyn , New York 11201 , United States
| | - Mohit Kumar
- Advanced Science Research Center (ASRC) , CUNY Graduate Center , New York , New York 10031 , United States
| | - Annalisa Calo
- Tandon School of Engineering , New York University , Brooklyn , New York 11201 , United States
| | - Edoardo Albisetti
- Tandon School of Engineering , New York University , Brooklyn , New York 11201 , United States
- Dipartimento di Fisica , Politecnico di Milano , Milano , 20133 , Italy
| | - Xiaorui Zheng
- Tandon School of Engineering , New York University , Brooklyn , New York 11201 , United States
| | - Kylie B Manning
- Department of Chemistry , New York University , New York , New York 10003 , United States
| | - Elizabeth Elacqua
- Department of Chemistry , New York University , New York , New York 10003 , United States
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Marcus Weck
- Department of Chemistry , New York University , New York , New York 10003 , United States
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) , CUNY Graduate Center , New York , New York 10031 , United States
| | - Elisa Riedo
- Tandon School of Engineering , New York University , Brooklyn , New York 11201 , United States
| |
Collapse
|
5
|
Liu X, Kumar M, Calo’ A, Albisetti E, Zheng X, Manning KB, Elacqua E, Weck M, Ulijn RV, Riedo E. High-throughput protein nanopatterning. Faraday Discuss 2019; 219:33-43. [DOI: 10.1039/c9fd00025a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We demonstrate a high resolution and high-throughput patterning method to generate protein nanopatterns with sub-10 nm resolution by using thermochemical scanning probe lithography.
Collapse
Affiliation(s)
- Xiangyu Liu
- Tandon School of Engineering
- New York University
- Brooklyn
- USA
| | - Mohit Kumar
- Advanced Science Research Center (ASRC)
- CUNY Graduate Center
- New York
- USA
| | - Annalisa Calo’
- Tandon School of Engineering
- New York University
- Brooklyn
- USA
| | - Edoardo Albisetti
- Tandon School of Engineering
- New York University
- Brooklyn
- USA
- Dipartimento di Fisica
| | - Xiaouri Zheng
- Tandon School of Engineering
- New York University
- Brooklyn
- USA
| | | | | | - Marcus Weck
- Department of Chemistry
- New York University
- New York
- USA
| | - Rein V. Ulijn
- Advanced Science Research Center (ASRC)
- CUNY Graduate Center
- New York
- USA
| | - Elisa Riedo
- Tandon School of Engineering
- New York University
- Brooklyn
- USA
| |
Collapse
|