1
|
Schätz J, Nayi N, Weber J, Metzke C, Lukas S, Walter J, Schaffus T, Streb F, Reato E, Piacentini A, Grundmann A, Kalisch H, Heuken M, Vescan A, Pindl S, Lemme MC. Button shear testing for adhesion measurements of 2D materials. Nat Commun 2024; 15:2430. [PMID: 38499534 PMCID: PMC10948857 DOI: 10.1038/s41467-024-46136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/15/2024] [Indexed: 03/20/2024] Open
Abstract
Two-dimensional (2D) materials are considered for numerous applications in microelectronics, although several challenges remain when integrating them into functional devices. Weak adhesion is one of them, caused by their chemical inertness. Quantifying the adhesion of 2D materials on three-dimensional surfaces is, therefore, an essential step toward reliable 2D device integration. To this end, button shear testing is proposed and demonstrated as a method for evaluating the adhesion of 2D materials with the examples of graphene, hexagonal boron nitride (hBN), molybdenum disulfide, and tungsten diselenide on silicon dioxide and silicon nitride substrates. We propose a fabrication process flow for polymer buttons on the 2D materials and establish suitable button dimensions and testing shear speeds. We show with our quantitative data that low substrate roughness and oxygen plasma treatments on the substrates before 2D material transfer result in higher shear strengths. Thermal annealing increases the adhesion of hBN on silicon dioxide and correlates with the thermal interface resistance between these materials. This establishes button shear testing as a reliable and repeatable method for quantifying the adhesion of 2D materials.
Collapse
Affiliation(s)
- Josef Schätz
- Infineon Technologies AG, Wernerwerkstraße 2, 93049, Regensburg, Germany
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Str. 25, 52074, Aachen, Germany
| | - Navin Nayi
- Infineon Technologies AG, Wernerwerkstraße 2, 93049, Regensburg, Germany
| | - Jonas Weber
- Department of Electrical Engineering and Media Technology, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469, Deggendorf, Germany
- Department of Applied Physics, University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Christoph Metzke
- Department of Electrical Engineering and Media Technology, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469, Deggendorf, Germany
- Department of Electrical Engineering, Helmut Schmidt University/University of the Federal Armed Forces Hamburg, Holstenhofweg 85, 22043, Hamburg, Germany
| | - Sebastian Lukas
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Str. 25, 52074, Aachen, Germany
| | - Jürgen Walter
- Infineon Technologies AG, Wernerwerkstraße 2, 93049, Regensburg, Germany
| | - Tim Schaffus
- Infineon Technologies AG, Wernerwerkstraße 2, 93049, Regensburg, Germany
| | - Fabian Streb
- Infineon Technologies AG, Wernerwerkstraße 2, 93049, Regensburg, Germany
| | - Eros Reato
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Str. 25, 52074, Aachen, Germany
| | - Agata Piacentini
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Str. 25, 52074, Aachen, Germany
- AMO GmbH, Advanced Microelectronic Center Aachen, Otto-Blumenthal-Str. 25, 52074, Aachen, Germany
| | - Annika Grundmann
- Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074, Aachen, Germany
| | - Holger Kalisch
- Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074, Aachen, Germany
| | - Michael Heuken
- Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074, Aachen, Germany
- AIXTRON SE, Dornkaulstr. 2, 52134, Herzogenrath, Germany
| | - Andrei Vescan
- Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074, Aachen, Germany
| | - Stephan Pindl
- Infineon Technologies AG, Wernerwerkstraße 2, 93049, Regensburg, Germany
| | - Max C Lemme
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Str. 25, 52074, Aachen, Germany.
- AMO GmbH, Advanced Microelectronic Center Aachen, Otto-Blumenthal-Str. 25, 52074, Aachen, Germany.
| |
Collapse
|
2
|
Tseng WS, Chen YC, Hsu CC, Lu CH, Wu CI, Yeh NC. Direct large-area growth of graphene on silicon for potential ultra-low-friction applications and silicon-based technologies. NANOTECHNOLOGY 2020; 31:335602. [PMID: 32369779 DOI: 10.1088/1361-6528/ab9045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Deposition of layers of graphene on silicon has the potential for a wide range of optoelectronic and mechanical applications. However, direct growth of graphene on silicon has been difficult due to the inert, oxidized silicon surfaces. Transferring graphene from metallic growth substrates to silicon is not a good solution either, because most transfer methods involve multiple steps that often lead to polymer residues or degradation of sample quality. Here we report a single-step method for large-area direct growth of continuous horizontal graphene sheets and vertical graphene nano-walls on silicon substrates by plasma-enhanced chemical vapor deposition (PECVD) without active heating. Comprehensive studies utilizing Raman spectroscopy, x-ray/ultraviolet photoelectron spectroscopy (XPS/UPS), atomic force microscopy (AFM), scanning electron microscopy (SEM) and optical transmission are carried out to characterize the quality and properties of these samples. Data gathered by the residual gas analyzer (RGA) during the growth process further provide information about the synthesis mechanism. Additionally, ultra-low friction (with a frictional coefficient ∼0.015) on multilayer graphene-covered silicon surface is achieved, which is approaching the superlubricity limit (for frictional coefficients <0.01). Our growth method therefore opens up a new pathway towards scalable and direct integration of graphene into silicon technology for potential applications ranging from structural superlubricity to nanoelectronics, optoelectronics, and even the next-generation lithium-ion batteries.
Collapse
Affiliation(s)
- Wei-Shiuan Tseng
- Department of Physics, California Institute of Technology, Pasadena, CA 91125, United States of America. College of Photonics, National Chiao-Tung University, Hsin-Chu 30013, Taiwan
| | | | | | | | | | | |
Collapse
|
3
|
López-Dı Az D, Merchán MD, Velázquez MM, Maestro A. Understanding the Role of Oxidative Debris on the Structure of Graphene Oxide Films at the Air-Water Interface: A Neutron Reflectivity Study. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25453-25463. [PMID: 32394699 DOI: 10.1021/acsami.0c05649] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We address here the role of oxidation impurities on the structure of graphene oxide films at the air-water interface by specular neutron reflectivity (SNR). We study films of purified graphene oxide (PGO) and nonpurified graphene oxide in the close-packed state. Nonpurified graphene oxide is constituted by graphene oxide (GO) layers with oxidation impurities adsorbed on the basal plane, while in PGO sheets, impurities are eliminated. SNR measurements show that GO films are formed by well-defined bilayers constituted by 2-3 layers of GO stacked in contact with air and a second layer of impurities submerged in the aqueous subphase. In contrast, PGO films are formed by a single layer in contact with air. We show for the first time that impurities constitute a layer submerged in the aqueous subphase, decrease the elasticity, and favor the collapse of graphene oxide films. Our results allow designing the surface properties of GO trapped at fluid interfaces.
Collapse
Affiliation(s)
- David López-Dı Az
- Departamento de Quı́mica Fı́sica, Facultad de Ciencias Quı́micas, Universidad de Salamanca, 37008 Salamanca, Spain
| | - M Dolores Merchán
- Departamento de Quı́mica Fı́sica, Facultad de Ciencias Quı́micas, Universidad de Salamanca, 37008 Salamanca, Spain
| | - M Mercedes Velázquez
- Departamento de Quı́mica Fı́sica, Facultad de Ciencias Quı́micas, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Armando Maestro
- Institut Max von Laue and Paul Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble, cedex 9, France
| |
Collapse
|
5
|
Macedo LJA, Iost RM, Hassan A, Balasubramanian K, Crespilho FN. Bioelectronics and Interfaces Using Monolayer Graphene. ChemElectroChem 2018. [DOI: 10.1002/celc.201800934] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lucyano J. A. Macedo
- São Carlos Institute of Chemistry; University of São Paulo; São Carlos SP 13560-970 Brazil
| | - Rodrigo M. Iost
- Department of Chemistry School of Analytical Sciences Adlershof (SALSA) and IRIS Adlershof; Humboldt-Universität zu Berlin; Berlin 10099 Germany
| | - Ayaz Hassan
- São Carlos Institute of Chemistry; University of São Paulo; São Carlos SP 13560-970 Brazil
| | - Kannan Balasubramanian
- Department of Chemistry School of Analytical Sciences Adlershof (SALSA) and IRIS Adlershof; Humboldt-Universität zu Berlin; Berlin 10099 Germany
| | - Frank N. Crespilho
- São Carlos Institute of Chemistry; University of São Paulo; São Carlos SP 13560-970 Brazil
| |
Collapse
|