1
|
Penfold J, Thomas RK. The Gibbs and Butler Equations and the Surface Activity of Dilute Aqueous Solutions of Strong and Weak Linear Polyelectrolyte-Surfactant Mixtures: The Roles of Surface Composition and Polydispersity. J Phys Chem B 2024; 128:8084-8102. [PMID: 39140373 PMCID: PMC11345831 DOI: 10.1021/acs.jpcb.4c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
In a previous paper, we applied a combination of direct measurements of both surface tension and surface excess in conjunction with the Gibbs equation to explain features of the adsorption and surface tension of mixtures of surfactants and strong linear polyelectrolytes at the air-water interface. This paper extends that model by including (i) the restrictions of the Butler equation for the behavior of the surface tension of mixed systems and (ii) the surface behavior of surfactant and linear weak polyelectrolyte mixtures, for which the inclusion of measurements of the surface excess and composition is shown to be particularly important. In addition, a closer examination of earlier data at higher concentrations provides evidence that the surface layering that is often observed in polyelectrolyte-surfactant systems is also an average equilibrium phenomenon and is driven by particular aggregation patterns that occur in some systems and not in others. Although the successful application of the Gibbs and Butler equations indicates that strong polyelectrolyte-surfactant systems can be described in terms of an average equilibrium over wide ranges of concentration, we have identified two concentration ranges where polydispersity in either polyelectrolyte molecular weight or composition results in significant time dependence of the surface behavior.
Collapse
Affiliation(s)
- Jeffrey Penfold
- Rutherford-Appleton
Laboratory, Chilton, Didcot, Oxfordshire OX11 0RA, U.K.
| | - Robert K. Thomas
- Physical
and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, U.K.
| |
Collapse
|
2
|
Rhamnolipid–SLES aqueous mixtures: From the molecular self-aggregation to the functional and ecotoxicological properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
3
|
Strong synergistic interactions in zwitterionic-anionic surfactant mixtures at the air-water interface and in micelles: The role of steric and electrostatic interactions. J Colloid Interface Sci 2022; 613:297-310. [PMID: 35042030 DOI: 10.1016/j.jcis.2022.01.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/22/2022]
Abstract
HYPOTHESIS The milder interaction with biosystems makes the zwitterionic surfactants an important class of surfactants, and they are widely used in biological applications and in personal care formulations. An important aspect of those applications is their strong synergistic interaction with anionic surfactants. It is anticipated that the strong interaction will significantly affect the adsorption and self-assembly properties. EXPERIMENTS Surface tension, ST, neutron reflectivity, NR, and small angle neutron scattering, SANS, have been used here to explore the synergistic mixing in micelles and at the air-water interface for the zwitterionic surfactant, dodecyldimethylammonium propanesulfonate, C12SB, and the anionic surfactants, alkyl ester sulfonate, AES, in the absence and presence of electrolyte, 0.1 M NaCl. FINDINGS At the air-water interface the asymmetry of composition in the strong synergistic interaction and the changes with added electrolyte and anionic surfactant structure reflect the relative contributions of the electrostatic and steric interactions to the excess free energy of mixing. In the mixed micelles the synergy is less pronounced and indicates less severe packing constraints. The micelle structure is predominantly globular to elongated, and shows a pronounced micellar growth with composition which depends strongly upon the nature of the anionic surfactant and the addition of electrolyte.
Collapse
|
4
|
Penfold J, Thomas RK. Neutron reflection and the thermodynamics of the air-water interface. Phys Chem Chem Phys 2022; 24:8553-8577. [PMID: 35352746 DOI: 10.1039/d2cp00053a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By means of isotopic substitution, measurements of the neutron reflectivity (NR) from a flat water surface generally give model independent measurements of the amount of a chosen solute at the surface irrespective of whether the layer is a mixture or whether there is any aggregation in the bulk solution. Previously, adsorption at air-water interfaces has been determined by applying the Gibbs equation to surface tension (ST) measurements, which requires assumptions about the composition of the surface and about the activity of the solute in the bulk, which, in turn, means that in practice the surface is assumed to consist of the pure solute or of a mixture of pure solutes, and that the activity of the solute in the bulk solution is known. The use of NR in combination with ST-Gibbs measurements makes it possible to (i) avoid these assumptions and hence understand several patterns of ST behaviour previously considered to be anomalous and (ii) to start to analyse quantitatively the behaviour of mixed surfactants both below and above the critical micelle concentration. These two developments in our understanding of the thermodynamics of the air-water interface are described with recent examples.
Collapse
Affiliation(s)
- Jeffrey Penfold
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxon, UK. .,Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, UK
| | - Robert K Thomas
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
5
|
Tucker I, Burley A, Petkova R, Hosking S, Thomas R, Penfold J, Li P, Ma K, Webster J, Welbourn R. Surfactant/biosurfactant mixing: Adsorption of saponin/nonionic surfactant mixtures at the air-water interface. J Colloid Interface Sci 2020; 574:385-392. [DOI: 10.1016/j.jcis.2020.04.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
|
6
|
Chen J, Hu XY, Fang Y, Xia YM. Cooperative effects of polypropylene oxide spacers and alkyl chains on dynamic amphipathicity of extended surfactants. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Drakontis CE, Amin S. Biosurfactants: Formulations, properties, and applications. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.03.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Penfold J, Thomas RK. Counterion Condensation, the Gibbs Equation, and Surfactant Binding: An Integrated Description of the Behavior of Polyelectrolytes and Their Mixtures with Surfactants at the Air-Water Interface. J Phys Chem B 2020; 124:6074-6094. [PMID: 32608983 DOI: 10.1021/acs.jpcb.0c02988] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
By applying the Gibbs equation to the bulk binding isotherms and surface composition of the air-water (A-W) interface in polyelectrolyte-surfactant (PE-S) systems, we show that their surface behavior can be explained semiquantitatively in terms of four concentration regions, which we label as A, B, C, and D. In the lowest-concentration range A, there are no bound PE-S complexes in the bulk but there may be adsorption of PE-S complexes at the surface. When significant adsorption occurs in this region, the surface tension (ST) drops with increasing concentration like a simple surfactant solution. Region B extends from the onset of bulk PE-S binding to the end of cooperative binding, in which the slow variation of surfactant activity with cooperative binding means that the ST changes relatively little, although adsorption may be significant. This leads to an approximate plateau, which may be at high or low ST. Region C starts where the binding in the bulk complex loses its cooperativity leading to a rapid change of surfactant activity with the total concentration. This, combined with significant adsorption, often leads to a sharp drop in ST. Region D is where precipitation and redissolution of the bulk PE-S complex occur. ST peaks may arise in region D because of loss of the solution complex that matches the value of the preferred surface stoichiometry, which seems to have a well-defined value for each system. The analysis is applied to the experimental systems, sodium polystyrene sulfonate-alkyltrimethylammonium bromides and poly(diallyldimethyl chloride)-sodium alkyl sulfates, with and without the added electrolyte, and includes data from bulk binding isotherms, phase diagrams, aggregation behavior, and direct measurements of the surface excess and stoichiometry of the surface. The successful fits of the Gibbs equation to the data confirm that the surfaces in these systems are largely equilibrated.
Collapse
Affiliation(s)
- Jeffrey Penfold
- STFC, Rutherford-Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0RA, U.K
| | - Robert K Thomas
- Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, U.K
| |
Collapse
|
9
|
Wang L, Liu S, Xin X, Cao X, Yuan D, Liu X, Luo X, Li Y, Zhang J. Mixed micelles formed by biological surfactant sodium deoxycholate and nonionic surfactants in aqueous solution. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1572515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Lin Wang
- Department of Chemistry, Qilu Normal University, Jinan, China
| | - Shasha Liu
- Department of Chemistry, Qilu Normal University, Jinan, China
| | - Xia Xin
- National Engineering Technology Research Center for Colloidal Materials, Shandong University, Jinan, China
| | - Xiaorong Cao
- Department of Chemistry, Qilu Normal University, Jinan, China
| | - Dong Yuan
- Department of Chemistry, Qilu Normal University, Jinan, China
| | - Xinzheng Liu
- Department of Chemistry, Qilu Normal University, Jinan, China
| | - Xingwei Luo
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Jinan, China
| | - Yanxin Li
- Department of Chemistry, Qilu Normal University, Jinan, China
| | - Junyu Zhang
- Department of Chemistry, Qilu Normal University, Jinan, China
| |
Collapse
|
10
|
Penfold J, Thomas R. Adsorption properties of plant based bio-surfactants: Insights from neutron scattering techniques. Adv Colloid Interface Sci 2019; 274:102041. [PMID: 31655367 DOI: 10.1016/j.cis.2019.102041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 01/16/2023]
Abstract
There is an increasing interest in biosustainable surfactants and surface active proteins for a range of applications, in home and personal care products, cosmetics, pharmaceuticals, and food and drink formulations. This review focuses on two plant derived biosurfactants, the surface active glycoside, saponin, and the surface active globular protein, hydrophobin. A particular emphasis in the review is on the role of neutron reflectivity in probing the adsorption, structure of the adsorbed layer, and their mixing at the interface with a range of more conventional surfactants and proteins.
Collapse
|
11
|
Penfold J, Thomas RK. Recent developments and applications of the thermodynamics of surfactant mixing. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1649489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Jeffrey Penfold
- ISIS Facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, UK
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Robert K. Thomas
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Liley J, Penfold J, Thomas R, Tucker I, Petkov J, Stevenson P, Banat I, Marchant R, Rudden M, Webster J. The performance of surfactant mixtures at low temperatures. J Colloid Interface Sci 2019; 534:64-71. [DOI: 10.1016/j.jcis.2018.08.099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 11/17/2022]
|