Bai S, Liu C, Wang L. Confined Synthesis of Silver Wire at the Nanopipette-Liquid/Liquid Interface.
LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021;
37:10741-10749. [PMID:
34450023 DOI:
10.1021/acs.langmuir.1c01394]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, silver wire is synthesized electrochemically within a nanopipette using the nanopipette-liquid/liquid interface. The i-t curve characterizes the growth state of the silver wire. The higher rate of current increase indicates the faster electron transfer and the faster growth of the silver wire; conversely, when the current does not increase significantly with time, i.e., the rate of increase of the current is small, the growth rate of the silver wire is slow. The main driving force for the growth of silver into a linear structure is the theoretical current differential between the water and oil, caused by the concentration difference between the silver nitrate and ferrocene. The growth of the silver wire is also influenced by the shape of the nanopipette. If the diameter of the pipet increases quickly, silver wire tends to produce multibranched structures, while a smaller diameter makes it easier to obtain silver wire with fewer branches due to the confinement effect. This method is also applicable to the synthesis of gold within a nanopipette. The combination of nanopipette and metallic material using a liquid-liquid interface results in a broader application of nanopipettes for nanopore sensors, nanopore electrodes, bipolar electrodes, etc.
Collapse