1
|
Wang C, Zhou Y, Ewuola C, Akinleye T, Hasegawa T, Leblanc RM. Determine both the conformation and orientation of a specific residue in α-synuclein(61–95) even in monolayer by 13C isotopic label and p-polarized multiple-angle incidence resolution spectrometry (pMAIRS). ANAL SCI 2022; 38:935-940. [PMID: 35633482 PMCID: PMC9206922 DOI: 10.1007/s44211-022-00128-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/07/2022] [Indexed: 11/30/2022]
Abstract
Protein’s magic function stems from its structure and various analytical techniques have been developed for it. Among proteins, membrane proteins are encoded 20–30% of genomes, whereas cause challenges for many analytical techniques. For example, lots of membrane proteins cannot form single crystal structure required by X-ray crystallography. As for NMR, the measurements were hindered by the low tumbling rates of membrane (i.e., phospholipid bilayers) where membrane proteins exist. In addition, membrane proteins usually lay parallel to the surface of phospholipid bilayers or form transmembrane structure. No matter parallel or perpendicular to phospholipid bilayers surface, membrane proteins form monolayer structure which is also difficult for X-ray and NMR to provide high-resolution results. Because NMR and X-ray crystallography are the two major analytical techniques to address protein’s structure, membrane proteins only contribute 2.4% to the solved protein databank. Surface FT-IR techniques can evaluate the conformation and orientation of membrane proteins by amide I band. Specifically for α-helical peptides/proteins, the orientation of the axis is critical to decide whether proteins form transmembrane structure. Notice that the traditional FT-IR can only provide “low-resolution” results. Here, 13C isotope was introduced into the nonamyloid component (NAC), which spans residues 61–95 of α-synuclein (α-syn). Then, p-polarized multiple-angle incidence resolution spectrometry (pMAIRS) was used to determine the orientation of a specific residue of α-helical NAC in monolayer. In general, pMAIRS is a novel technique to work complementary with X-ray and NMR to address membrane peptides/proteins structure with high resolution even in monolayer.
Collapse
Affiliation(s)
- Chengshan Wang
- Department of Chemistry, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, TN, 37132, USA.
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Christopher Ewuola
- Department of Chemistry, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, TN, 37132, USA
| | - Toyin Akinleye
- Department of Chemistry, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, TN, 37132, USA
| | - Takeshi Hasegawa
- Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemistry Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA.
| |
Collapse
|
2
|
Kim I, Lee D, Lee SW, Lee JH, Lee G, Yoon DS. Coagulation-Inspired Direct Fibrinogen Assay Using Plasmonic Nanoparticles Functionalized with Red Blood Cell Membranes. ACS NANO 2021; 15:6386-6394. [PMID: 33512135 DOI: 10.1021/acsnano.0c08136] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The fast measurement of fibrinogen is essential in evaluating life-threatening sepsis and cardiovascular diseases. Here, we aim to utilize biomimetic plasmonic Au nanoparticles using red blood cell membranes (RBCM-AuNPs) and demonstrate nanoscale coagulation-inspired fibrinogen detection via cross-linking between RBCM-AuNPs. The proposed biomimetic RBCM-AuNPs are highly suitable for fibrinogen detection because hemagglutination, occurring in the presence of fibrinogen, induces a shift in the localized surface plasmon resonance of the NPs. Specifically, when the two ends of the fibrinogen protein are bound to receptors on separate RBCM-AuNPs, cross-linking of the RBCM-AuNPs occurs, yielding a corresponding plasmon shift within 10 min. This coagulation-inspired fibrinogen detection method, with a low sample volume, high selectivity, and high speed, could facilitate the diagnosis of sepsis and cardiovascular diseases.
Collapse
Affiliation(s)
- Insu Kim
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Dongtak Lee
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sang Won Lee
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jeong Hoon Lee
- Department of Electrical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
Paudyal S, Sharma SK, da Silva RL, Mintz KJ, Liyanage PY, Al-Youbi AO, Bashammakh AS, El-Shahawi MS, Leblanc RM. Tyrosinase enzyme Langmuir monolayer: Surface chemistry and spectroscopic study. J Colloid Interface Sci 2020; 564:254-263. [DOI: 10.1016/j.jcis.2019.12.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/25/2019] [Accepted: 12/26/2019] [Indexed: 02/08/2023]
|
4
|
Surface chemistry and spectroscopic studies of the native phenylalanine dehydrogenase Langmuir monolayer at the air/aqueous NaCl interface. J Colloid Interface Sci 2020; 560:458-466. [DOI: 10.1016/j.jcis.2019.10.086] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 02/03/2023]
|
5
|
Conformation change of α-synuclein(61-95) at the air-water interface and quantitative measurement of the tilt angle of the axis of its α-helix by multiple angle incidence resolution spectroscopy. Colloids Surf B Biointerfaces 2019; 183:110401. [DOI: 10.1016/j.colsurfb.2019.110401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/16/2019] [Accepted: 07/26/2019] [Indexed: 11/18/2022]
|
6
|
Hu J, Liu H, Xu P, Shang Y, Liu H. Investigation of Drug for Pulmonary Administration-Model Pulmonary Surfactant Monolayer Interactions Using Langmuir-Blodgett Monolayer and Molecular Dynamics Simulation: A Case Study of Ketoprofen. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13452-13460. [PMID: 31524404 DOI: 10.1021/acs.langmuir.9b02412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pulmonary administration is widely used for the treatment of lung diseases. The interaction between drug molecules and pulmonary surfactants affects the efficacy of the drug directly. The location and distribution of drug molecules in a model pulmonary surfactant monolayer under different surface pressures can provide vivid information on the interaction between drug molecules and pulmonary surfactants during the pulmonary administration. Ketoprofen is a nonsteroidal anti-inflammatory drug for pulmonary administration. The effect of ketoprofen molecules on the lipid monolayer containing 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-glycerol (DPPG) is studied by surface pressure (π)-area (A) isotherms and compressibility modulus (Cs-1)-surface pressure (π) isotherms. The location and distribution of ketoprofen molecules in a lipid monolayer under different surface pressures are explored by surface tension, density profile, radial distribution function (RDF), and the potential of mean force (PMF) simulated by molecular dynamics (MD) simulation. The introduction of ketoprofen molecules affects the properties of DPPC/DPPG monolayers and the location and distribution of ketoprofen molecules in monolayers with various surface pressures. The existence of ketoprofen molecules hinders the formation of liquid-condensed (LC) films and decreases the compressibility of DPPC/DPPG monolayers. The location and distribution of ketoprofen molecules in the lipid monolayer are affected by cation-π interaction between the choline group of lipids and the benzene ring of ketoprofen, the steric hindrance of the lipid head groups, and the hydrophobicity of ketoprofen molecule itself, comprehensively. The contact state of lipid head group with water is determined by surface pressure, which affects the interaction between drug molecules and lipids and further dominates the location and distribution of ketoprofen in the lipid monolayer. This work confirms that ketoprofen molecules can affect the property and the inner structure of DPPC/DPPG monolayers during breathing. Furthermore, the results obtained using a mixed monolayer containing two major pulmonary surfactants DPPC/DPPG and ketoprofen molecules will be helpful for the in-depth understanding of the mechanism of inhaled administration therapy.
Collapse
Affiliation(s)
- Jiajie Hu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Hengjiang Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Pu Xu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
7
|
Sharma SK, Micic M, Li S, Hoar B, Paudyal S, Zahran EM, Leblanc RM. Conjugation of Carbon Dots with β-Galactosidase Enzyme: Surface Chemistry and Use in Biosensing. Molecules 2019; 24:molecules24183275. [PMID: 31505751 PMCID: PMC6766898 DOI: 10.3390/molecules24183275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 12/13/2022] Open
Abstract
Nanoparticles have been conjugated to biological systems for numerous applications such as self-assembly, sensing, imaging, and therapy. Development of more reliable and robust biosensors that exhibit high response rate, increased detection limit, and enhanced useful lifetime is in high demand. We have developed a sensing platform by the conjugation of β-galactosidase, a crucial enzyme, with lab-synthesized gel-like carbon dots (CDs) which have high luminescence, photostability, and easy surface functionalization. We found that the conjugated enzyme exhibited higher stability towards temperature and pH changes in comparison to the native enzyme. This enriched property of the enzyme was distinctly used to develop a stable, reliable, robust biosensor. The detection limit of the biosensor was found to be 2.9 × 10−4 M, whereas its sensitivity was 0.81 µA·mmol−1·cm−2. Further, we used the Langmuir monolayer technique to understand the surface properties of the conjugated enzyme. It was found that the conjugate was highly stable at the air/subphase interface which additionally reinforces the suitability of the use of the conjugated enzyme for the biosensing applications.
Collapse
Affiliation(s)
- Shiv K Sharma
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Miami, FL 33146, USA.
| | - Miodrag Micic
- MP Biomedicals LLC, 3 Hutton Center, Santa Ana, CA 92707, USA.
- Department of Engineering Design Technology, Cerritos College, 11110 Alondra Boulevard, Norwalk, CA 90650, USA.
| | - Shanghao Li
- MP Biomedicals LLC, 3 Hutton Center, Santa Ana, CA 92707, USA.
| | - Benjamin Hoar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.
| | - Suraj Paudyal
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Miami, FL 33146, USA.
| | - Elsayed M Zahran
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA.
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Miami, FL 33146, USA.
| |
Collapse
|
8
|
Zhou Y, Mintz KJ, Sharma SK, Leblanc RM. Carbon Dots: Diverse Preparation, Application, and Perspective in Surface Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9115-9132. [PMID: 31267753 DOI: 10.1021/acs.langmuir.9b00595] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Carbon dots (CDs) are a novel class of nanoparticles with excellent properties. The development of CDs involves versatile synthesis, characterization, and various applications. However, the importance of surface chemistry of CDs, especially in applications, is often underestimated. In fact, the study of the surface chemistry of CDs is of great significance in the explanation of the unique properties of CDs as well as the pursuit of potential applications. In this feature article, we do not only introduce the development of CDs in our group but also highlight their applications where surface chemistry plays a critical role.
Collapse
Affiliation(s)
- Yiqun Zhou
- Department of Chemistry , University of Miami , Coral Gables , Florida 33146 , United States
| | - Keenan J Mintz
- Department of Chemistry , University of Miami , Coral Gables , Florida 33146 , United States
| | - Shiv K Sharma
- Department of Chemistry , University of Miami , Coral Gables , Florida 33146 , United States
| | - Roger M Leblanc
- Department of Chemistry , University of Miami , Coral Gables , Florida 33146 , United States
| |
Collapse
|
9
|
Seven ES, Sharma SK, Meziane D, Zhou Y, Mintz KJ, Pandey RR, Chusuei CC, Leblanc RM. Close-Packed Langmuir Monolayers of Saccharide-Based Carbon Dots at the Air-Subphase Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6708-6718. [PMID: 31039318 DOI: 10.1021/acs.langmuir.9b00920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Carbon dots (CDs) are zero-dimensional carbon-based spherical nanoparticles with diameters less than 10 nm. Here, we report for the first time CDs forming stable Langmuir monolayers at the air-subphase interface. Langmuir monolayers are of great interest both fundamentally to study the interactions at the interfaces and for many applications such as the development of sensors. However, CDs usually do not form Langmuir monolayers because of their highly hydrophilic nature. In this study, amphiphilic CDs were prepared through hydrothermal carbonization using saccharides as the precursors. The surface chemistry behavior and optical properties of CDs at the air-subphase interface were studied. CDs derived from saccharides consistently formed stable Langmuir monolayers which show all essential phases, namely, gas, liquid-expanded, liquid-condensed, and solid phases. The compression-decompression cycle method showed minimum hysteresis (4.3%), confirming the retaining capacity of the CDs as a monolayer. Limiting CD areas from surface pressure-area isotherm at the air-subphase interface were used to calculate the average diameter of the CDs at the air-subphase interface. UV/vis absorption spectra of CDs dispersed in water and in Langmuir monolayers had the same bands in the UV region. The intensity of the UV/vis absorption increases with increasing surface pressure at the air-subphase interface. Interestingly, photoluminescence (PL) of the Langmuir monolayer of CDs was excitation-independent, whereas the same CDs had excitation-dependent PL when dispersed in water.
Collapse
Affiliation(s)
- Elif S Seven
- Department of Chemistry , University of Miami , 1301 Memorial Drive , Coral Gables , Florida 33146 , United States
| | - Shiv K Sharma
- Department of Chemistry , University of Miami , 1301 Memorial Drive , Coral Gables , Florida 33146 , United States
| | - Dihya Meziane
- Department of Chemistry , University of Miami , 1301 Memorial Drive , Coral Gables , Florida 33146 , United States
| | - Yiqun Zhou
- Department of Chemistry , University of Miami , 1301 Memorial Drive , Coral Gables , Florida 33146 , United States
| | - Keenan J Mintz
- Department of Chemistry , University of Miami , 1301 Memorial Drive , Coral Gables , Florida 33146 , United States
| | - Raja R Pandey
- Department of Chemistry , Middle Tennessee State University , 440 Friendship Street , Murfreesboro , Tennessee 37132 , United States
| | - Charles C Chusuei
- Department of Chemistry , Middle Tennessee State University , 440 Friendship Street , Murfreesboro , Tennessee 37132 , United States
| | - Roger M Leblanc
- Department of Chemistry , University of Miami , 1301 Memorial Drive , Coral Gables , Florida 33146 , United States
| |
Collapse
|
10
|
Sharma SK, Poudel Sharma S, Miller D, Parel JMA, Leblanc RM. Interfacial Behavior of Fumonisin B1 Toxin and Its Degradation on the Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2814-2820. [PMID: 30673288 DOI: 10.1021/acs.langmuir.8b03505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fumonisin B1 (FB1), the most abundant component of the fumonisin family, is highly responsible for fungal infections. In this paper, our main aim is to study the surface chemistry and spectroscopic properties of the FB1 molecule and observe the impact of green LED light on the FB1 Langmuir monolayer. From the surface chemistry and spectroscopic studies, we found that the FB1 molecule forms a self-assembled Langmuir monolayer which is sufficient to mimic its interaction with the corneal tissues. The irradiation of green LED light on the FB1 Langmuir monolayer showed the degradation of the FB1 when compared to that in the absence of light. This observation reveals that FB1 molecules lose their tendency to stay as a Langmuir monolayer. The degradation observed on the interface was compared with the bulk phase of FB1. The bulk phase observation also indicated the degradation tendency which reinforced the observed interfacial property of FB1.
Collapse
Affiliation(s)
- Shiv K Sharma
- Department of Chemistry , University of Miami , 1301 Memorial Drive , Coral Gables , Florida 33146 , United States
| | - Sijan Poudel Sharma
- Department of Biology , University of Miami , 1301 Memorial Drive , Coral Gables, Florida 33146 , United States
| | - Darlene Miller
- Bascom Palmer Eye Institute , Miller School of Medicine , 900 NW 17th St. , Miami , Florida 33136 , United States
| | - Jean-Marie A Parel
- Bascom Palmer Eye Institute , Miller School of Medicine , 900 NW 17th St. , Miami , Florida 33136 , United States
| | - Roger M Leblanc
- Department of Chemistry , University of Miami , 1301 Memorial Drive , Coral Gables , Florida 33146 , United States
| |
Collapse
|