1
|
Qiu G, Zhou W, Liu Y, Meng T, Yu F, Jin X, Lian K, Zhou X, Yuan H, Hu F. NIR-Triggered Thermosensitive Nanoreactors for Dual-Guard Mechanism-Mediated Precise and Controllable Cancer Chemo-Phototherapy. Biomacromolecules 2024; 25:964-974. [PMID: 38232296 DOI: 10.1021/acs.biomac.3c01070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/19/2024]
Abstract
Thermosensitive nanoparticles can be activated by externally applying heat, either through laser irradiation or magnetic fields, to trigger the release of drug payloads. This controlled release mechanism ensures that drugs are specifically released at the tumor site, maximizing their effectiveness while minimizing systemic toxicity and adverse effects. However, its efficacy is limited by the low concentration of drugs at action sites, which is caused by no specific target to tumor sties. Herein, hyaluronic acid (HA), a gooey, slippery substance with CD44-targeting ability, was conjugated with a thermosensitive polymer poly(acrylamide-co-acrylonitrile) to produce tumor-targeting and thermosensitive polymeric nanocarrier (HA-P) with an upper critical solution temperature (UCST) at 45 °C, which further coloaded chemo-drug doxorubicin (DOX) and photosensitizer Indocyanine green (ICG) to prepare thermosensitive nanoreactors HA-P/DOX&ICG. With photosensitizer ICG acting as the "temperature control element", HA-P/DOX&ICG nanoparticles can respond to temperature changes when receiving near-infrared irradiation and realize subsequent structure depolymerization for burst drug release when the ambient temperature was above 45 °C, achieving programmable and on-demand drug release for effective antitumor therapy. Tumor inhibition rate increased from 61.8 to 95.9% after laser irradiation. Furthermore, the prepared HA-P/DOX&ICG nanoparticles possess imaging properties, with ICG acting as a probe, enabling real-time monitoring of drug distribution and therapeutic response, facilitating precise treatment evaluation. These results provide enlightenment for the design of active tumor targeting and NIR-triggered programmable and on-demand drug release of thermosensitive nanoreactors for tumor therapy.
Collapse
Affiliation(s)
- Guoxi Qiu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Wentao Zhou
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yupeng Liu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Fangying Yu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xiangyu Jin
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Keke Lian
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xueqing Zhou
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
2
|
Wang Z, Ye Q, Yu S, Akhavan B. Poly Ethylene Glycol (PEG)-Based Hydrogels for Drug Delivery in Cancer Therapy: A Comprehensive Review. Adv Healthc Mater 2023; 12:e2300105. [PMID: 37052256 PMCID: PMC11468892 DOI: 10.1002/adhm.202300105] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/10/2023] [Revised: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Hydrogel-based drug delivery systems (DDSs) can leverage therapeutically beneficial outcomes in cancer therapy. In this domain, polyethylene glycol (PEG) has become increasingly popular as a biomedical polymer and has found clinical use. Owing to their excellent biocompatibility, facile modifiability, and high drug encapsulation rate, PEG hydrogels have shown great promise as drug delivery platforms. Here, the progress in emerging novel designs of PEG-hydrogels as DDSs for anti-cancer therapy is reviewed and discussed, focusing on underpinning multiscale release mechanisms categorized under stimuli-responsive and non-responsive drug release. The responsive drug delivery approaches are discussed, and the underpinning release mechanisms are elucidated, covering the systems functioning based on either exogenous stimuli-response, such as photo- and magnetic-sensitive PEG hydrogels, or endogenous stimuli-response, such as enzyme-, pH-, reduction-, and temperature-sensitive PEG hydrogels. Special attention is paid to the commercial potential of PEG-based hydrogels in cancer therapy, highlighting the limitations that need to be addressed in future research for their clinical translation.
Collapse
Affiliation(s)
- Zihan Wang
- College of ChemistryNankai UniversityTianjin300071P. R. China
| | - Qinzhou Ye
- Sichuan Agricultural UniversitySichuan611130P. R. China
| | - Sheng Yu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan ProvinceChina West Normal UniversityNanchong637000P. R. China
| | - Behnam Akhavan
- School of EngineeringUniversity of NewcastleCallaghanNSW2308Australia
- Hunter Medical Research Institute (HMRI)New Lambton HeightsNSW2305Australia
- School of PhysicsThe University of SydneySydneyNSW2006Australia
- School of Biomedical EngineeringThe University of SydneySydneyNSW2006Australia
- Sydney Nano InstituteThe University of SydneySydneyNSW2006Australia
| |
Collapse
|
3
|
Takebuchi H, Jin RH. Photoluminescent polymer micelles with thermo-/pH-/metal responsibility and their features in selective optical sensing of Pd(ii) cations. RSC Adv 2022; 12:5720-5731. [PMID: 35425587 PMCID: PMC8981652 DOI: 10.1039/d1ra08756h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Photoluminescent polymers can be divided into two types of structures: one is the well-known conventional π-conjugated rigid chain polymers bearing π-conjugated chromophores in their side chains, and the other is the common flexible polymers without π-conjugated chromophores in their main or side chains but with a feature of clustering electron-rich and/or dipole groups in their main and/or side chains. In this work, we found a new photoluminescent polymer comprising theophylline (T) and imidazole (I) residues in a suitable ratio in the side chains on the common polystyrenic block (PVB-T/I). We synthesized a block copolymer (denoted as P2) consisting of hydrophobic PVB-T/I and hydrophilic poly(N-isopropylacrylamide), and we investigated its self-assembly into micelles and their micellar features, such as thermo-responsibility, fluorescence emission, pH, and metal ion-dependent photoluminescence, in detail. Especially, the micelles self-assembled from P2 showed intrinsic blue emission which was emitted from the charge transfer association between T and I residues in the intra-chains. Weakening the association by adjustment of the pH or addition of metal ions could evidently reduce the photoluminescence in the micellar state. Very interestingly, among many metal cations, only Pd2+, which can chelate strongly with theophylline, strongly quenched the photoluminescence from the micelles. Therefore, the polymer micelles functioned as an optical sensor for Pd(ii) ion not only by spectroscopy but also with the naked eye.
Collapse
Affiliation(s)
- Haruka Takebuchi
- Department of Material and Life Chemistry, Kanagawa University 3-2-7 Rokkakubashi Yokohama 221-8686 Japan
| | - Ren-Hua Jin
- Department of Material and Life Chemistry, Kanagawa University 3-2-7 Rokkakubashi Yokohama 221-8686 Japan
| |
Collapse
|
4
|
Liu H, Prachyathipsakul T, Koyasseril-Yehiya TM, Le SP, Thayumanavan S. Molecular bases for temperature sensitivity in supramolecular assemblies and their applications as thermoresponsive soft materials. MATERIALS HORIZONS 2022; 9:164-193. [PMID: 34549764 PMCID: PMC8757657 DOI: 10.1039/d1mh01091c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/07/2023]
Abstract
Thermoresponsive supramolecular assemblies have been extensively explored in diverse formats, from injectable hydrogels to nanoscale carriers, for a variety of applications including drug delivery, tissue engineering and thermo-controlled catalysis. Understanding the molecular bases behind thermal sensitivity of materials is fundamentally important for the rational design of assemblies with optimal combination of properties and predictable tunability for specific applications. In this review, we summarize the recent advances in this area with a specific focus on the parameters and factors that influence thermoresponsive properties of soft materials. We summarize and analyze the effects of structures and architectures of molecules, hydrophilic and lipophilic balance, concentration, components and external additives upon the thermoresponsiveness of the corresponding molecular assemblies.
Collapse
Affiliation(s)
- Hongxu Liu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
| | | | | | - Stephanie P Le
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Centre for Bioactive Delivery, Institute for Applied Life Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
5
|
Dey S, Roy A, Manna K, Pal S. The UCST phase transition of a dextran based copolymer in aqueous media with tunable thermoresponsive behavior. Polym Chem 2022. [DOI: 10.1039/d2py00626j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
A hydrogen bonded UCST polymer has been developed by grafting of methacrylamide and acrylic acid on dextran via free radical polymerization.
Collapse
Affiliation(s)
- Shaon Dey
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad-826004, India
| | - Arpita Roy
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad-826004, India
| | - Kalipada Manna
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad-826004, India
| | - Sagar Pal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad-826004, India
| |
Collapse
|
6
|
Micellar phase control of poly(acrylic-acid-co-acrylonitrile) polymeric micelles via upper critical solution temperature: Removal process of organic molecules. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
|
7
|
Aliakseyeu A, Hlushko R, Sukhishvili SA. Nonionic star polymers with upper critical solution temperature in aqueous solutions. Polym Chem 2022. [DOI: 10.1039/d2py00216g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022]
Abstract
Novel UCST star poly(2-ureido methacrylates) synthesized via the ARGET ATRP technique showed enhanced trapping abilities of model drug molecules.
Collapse
Affiliation(s)
- Aliaksei Aliakseyeu
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Raman Hlushko
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Svetlana A. Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
8
|
Flemming P, Münch AS, Fery A, Uhlmann P. Constrained thermoresponsive polymers - new insights into fundamentals and applications. Beilstein J Org Chem 2021; 17:2123-2163. [PMID: 34476018 PMCID: PMC8381851 DOI: 10.3762/bjoc.17.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
In the last decades, numerous stimuli-responsive polymers have been developed and investigated regarding their switching properties. In particular, thermoresponsive polymers, which form a miscibility gap with the ambient solvent with a lower or upper critical demixing point depending on the temperature, have been intensively studied in solution. For the application of such polymers in novel sensors, drug delivery systems or as multifunctional coatings, they typically have to be transferred into specific arrangements, such as micelles, polymer films or grafted nanoparticles. However, it turns out that the thermodynamic concept for the phase transition of free polymer chains fails, when thermoresponsive polymers are assembled into such sterically confined architectures. Whereas many published studies focus on synthetic aspects as well as individual applications of thermoresponsive polymers, the underlying structure-property relationships governing the thermoresponse of sterically constrained assemblies, are still poorly understood. Furthermore, the clear majority of publications deals with polymers that exhibit a lower critical solution temperature (LCST) behavior, with PNIPAAM as their main representative. In contrast, for polymer arrangements with an upper critical solution temperature (UCST), there is only limited knowledge about preparation, application and precise physical understanding of the phase transition. This review article provides an overview about the current knowledge of thermoresponsive polymers with limited mobility focusing on UCST behavior and the possibilities for influencing their thermoresponsive switching characteristics. It comprises star polymers, micelles as well as polymer chains grafted to flat substrates and particulate inorganic surfaces. The elaboration of the physicochemical interplay between the architecture of the polymer assembly and the resulting thermoresponsive switching behavior will be in the foreground of this consideration.
Collapse
Affiliation(s)
- Patricia Flemming
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Alexander S Münch
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Petra Uhlmann
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- University of Nebraska-Lincoln, NE 68588, Lincoln, USA
| |
Collapse
|
9
|
Takebuchi H, Jin R. A Unique Nano‐Capsule Possessing Inner Thermo‐Responsive Surface Prepared from a Toothbrush‐Like Comb−Coil Block Copolymer. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022]
Affiliation(s)
- Haruka Takebuchi
- Department of Material and Life Chemistry Kanagawa University 3‐2‐7 Rokkakubashi Yokohama 221–8686 Japan
| | - Ren‐Hua Jin
- Department of Material and Life Chemistry Kanagawa University 3‐2‐7 Rokkakubashi Yokohama 221–8686 Japan
| |
Collapse
|
10
|
Miclotte MJ, Lawrenson SB, Varlas S, Rashid B, Chapman E, O’Reilly RK. Tuning the Cloud-Point and Flocculation Temperature of Poly(2-(diethylamino)ethyl methacrylate)-Based Nanoparticles via a Postpolymerization Betainization Approach. ACS POLYMERS AU 2021; 1:47-58. [PMID: 34476421 PMCID: PMC8389998 DOI: 10.1021/acspolymersau.1c00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/28/2021] [Indexed: 11/28/2022]
Abstract
The ability to tune the behavior of temperature-responsive polymers and self-assembled nanostructures has attracted significant interest in recent years, particularly in regard to their use in biotechnological applications. Herein, well-defined poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA)-based core-shell particles were prepared by RAFT-mediated emulsion polymerization, which displayed a lower-critical solution temperature (LCST) phase transition in aqueous media. The tertiary amine groups of PDEAEMA units were then utilized as functional handles to modify the core-forming block chemistry via a postpolymerization betainization approach for tuning both the cloud-point temperature (T CP) and flocculation temperature (T CFT) of these particles. In particular, four different sulfonate salts were explored aiming to investigate the effect of the carbon chain length and the presence of hydroxyl functionalities alongside the carbon spacer on the particle's thermoresponsiveness. In all cases, it was possible to regulate both T CP and T CFT of these nanoparticles upon varying the degree of betainization. Although T CP was found to be dependent on the type of betainization reagent utilized, it only significantly increased for particles betainized using sodium 3-chloro-2-hydroxy-1-propanesulfonate, while varying the aliphatic chain length of the sulfobetaine only provided limited temperature variation. In comparison, the onset of flocculation for betainized particles varied over a much broader temperature range when varying the degree of betainization with no real correlation identified between T CFT and the sulfobetaine structure. Moreover, experimental results were shown to partially correlate to computational oligomer hydrophobicity calculations. Overall, the innovative postpolymerization betainization approach utilizing various sulfonate salts reported herein provides a straightforward methodology for modifying the thermoresponsive behavior of soft polymeric particles with potential applications in drug delivery, sensing, and oil/lubricant viscosity modification.
Collapse
Affiliation(s)
- Matthieu
P. J. Miclotte
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Stefan B. Lawrenson
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Spyridon Varlas
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Bilal Rashid
- BP
Exploration Operating Company Ltd., Chertsey Road, Sunbury-on-Thames,
Middlesex TW16 7LN, United
Kingdom
| | - Emma Chapman
- BP
Exploration Operating Company Ltd., Chertsey Road, Sunbury-on-Thames,
Middlesex TW16 7LN, United
Kingdom
| | - Rachel K. O’Reilly
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom,
| |
Collapse
|
11
|
Li K, Zang X, Cheng M, Chen X. Stimuli-responsive nanoparticles based on poly acrylic derivatives for tumor therapy. Int J Pharm 2021; 601:120506. [PMID: 33798689 DOI: 10.1016/j.ijpharm.2021.120506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/13/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022]
Abstract
Serve side effects caused by discriminate damage of chemotherapeutic drugs to normal cell and cancer cells remain a main obstacle in clinic. Hence, continuous efforts have been made to find ways to effectively enhance drug delivery and reduce side effects. Recent decades have witnessed impressive progresses in fighting against cancer, with improved understanding of tumor microenvironment and rapid development in nanoscale drug delivery system (DDS). Nanocarriers based on biocompatible materials provide possibilities to improve antitumor efficiency and minimize off-target effects. Among all kinds of biocompatible materials applied in DDS, polymeric acrylic derivatives such as poly(acrylamide), poly(acrylic acid), poly(N-isopropylacrylamide) present inherent biocompatibility and stimuli-responsivity, and relatively easy to be functionalized. Furthermore, nanocarrier based on polymeric acrylic derivatives have demonstrated high drug encapsulation, improved uptake efficiency, prolonged circulation time and satisfactory therapeutic outcome in tumor. In this review, we aim to discuss recent progress in design and development of stimulus-responsive poly acrylic polymer based nanocarriers for tumor targeting drug delivery.
Collapse
Affiliation(s)
- Kangkang Li
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, PR China.
| | - Xinlong Zang
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, PR China.
| | - Mingyang Cheng
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, PR China
| | - Xuehong Chen
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao, PR China.
| |
Collapse
|
12
|
Lu J, Xu M, Lei Y, Gong L, Zhao C. Aqueous Synthesis of Upper Critical Solution Temperature and Lower Critical Solution Temperature Copolymers through Combination of Hydrogen-Donors and Hydrogen-Acceptors. Macromol Rapid Commun 2021; 42:e2000661. [PMID: 33480461 DOI: 10.1002/marc.202000661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2020] [Revised: 01/08/2021] [Indexed: 11/06/2022]
Abstract
The synthesis of thermo-responsive polymers from non-responsive and water-soluble monomers has great practical advantages but significant challenges. Herein, the authors report a novel aqueous copolymerization strategy to prepare polymers with tunable upper critical solution temperature (UCST) or lower critical solution temperature (LCST) from non-responsive monomers. Acrylic acid (AAc), N-vinylpyrrolidone (NVP), and acrylamide (AAm) are copolymerized in water, yielding copolymers with UCST behavior. Interestingly, by simply replacing AAm with its methylated homologue, dimethyl acrylamide (DMA), the thermo-responsiveness of the copolymers is converted into LCST-type. The cloud points of the copolymers can be tuned rationally with their monomer ratios and the condition of the solvent. The UCST property of the poly(AAc-NVP-AAm) comes from the AAc-AAm and AAc-NVP hydrogen-bonds, while the LCST property of poly(AAc-NVP-DMA) originates from the hydrophobic aggregation of AAc-NVP complex and DMA, as indicated by temperature-dependent 1 H NMR and dynamic light scattering.
Collapse
Affiliation(s)
- Jianlei Lu
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Mengdi Xu
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yi Lei
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Lihao Gong
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chuanzhuang Zhao
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
13
|
Kertsomboon T, Agarwal S, Chirachanchai S. UCST‐Type Copolymer through the Combination of Water‐Soluble Polyacrylamide and Polycaprolactone‐Like Polyester. Macromol Rapid Commun 2020; 41:e2000243. [DOI: 10.1002/marc.202000243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/03/2020] [Revised: 08/08/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Thanit Kertsomboon
- Bioresources Advanced Materials (B2A) The Petroleum and Petrochemical College Chulalongkorn University Bangkok 10330 Thailand
| | - Seema Agarwal
- Macromolecular Chemistry II and Center for Colloids and Interfaces University of Bayreuth Bayreuth 95440 Germany
| | - Suwabun Chirachanchai
- Bioresources Advanced Materials (B2A) The Petroleum and Petrochemical College Chulalongkorn University Bangkok 10330 Thailand
- Center of Excellence on Petrochemical and Materials Technology Chulalongkorn University Bangkok 10330 Thailand
| |
Collapse
|
14
|
Cai S, Gu S, Li X, Wan S, Chen S, He X. Controlled grafting modification of starch and UCST-type thermosensitive behavior in water. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04670-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/22/2023]
|
15
|
Kavand A, Anton N, Vandamme T, Serra CA, Chan-Seng D. Synthesis and functionalization of hyperbranched polymers for targeted drug delivery. J Control Release 2020; 321:285-311. [DOI: 10.1016/j.jconrel.2020.02.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/07/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
|
16
|
Audureau N, Coumes F, Guigner JM, Nguyen TPT, Ménager C, Stoffelbach F, Rieger J. Thermoresponsive properties of poly(acrylamide- co-acrylonitrile)-based diblock copolymers synthesized (by PISA) in water. Polym Chem 2020. [DOI: 10.1039/d0py00895h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
Abstract
UCST-type poly(acrylamide-co-acrylonitrile) diblock copolymers synthesized in water (by PISA) can not only undergo reversible temperature-induced chain dissociation, but also temperature-induced morphological transition.
Collapse
Affiliation(s)
- Nicolas Audureau
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- Polymer Chemistry Team
| | - Fanny Coumes
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- Polymer Chemistry Team
| | - Jean-Michel Guigner
- Sorbonne Université
- CNRS
- UMR 7590 Institut de Minéralogie
- de Physique des Matériaux et de Cosmochimie (IMPMC)-IRD-MNHN
- F-75005 Paris
| | - Thi Phuong Thu Nguyen
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- Polymer Chemistry Team
| | - Christine Ménager
- Sorbonne Université
- CNRS
- UMR 8234
- PHENIX Laboratory
- 75252 Paris cedex 05
| | - François Stoffelbach
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- Polymer Chemistry Team
| | - Jutta Rieger
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- Polymer Chemistry Team
| |
Collapse
|
17
|
Otsuka C, Wakahara Y, Okabe K, Sakata J, Okuyama M, Hayashi A, Tokuyama H, Uchiyama S. Fluorescent Labeling Method Re-Evaluates the Intriguing Thermoresponsive Behavior of Poly(acrylamide-co-acrylonitrile)s with Upper Critical Solution Temperatures. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00880] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/23/2023]
Affiliation(s)
- Chie Otsuka
- Research Laboratories, KOSÉ Corporation, 48-18 Sakae-cho, Kita-ku, Tokyo 114-0005, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuko Wakahara
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kohki Okabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Juri Sakata
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Masaki Okuyama
- Research Laboratories, KOSÉ Corporation, 48-18 Sakae-cho, Kita-ku, Tokyo 114-0005, Japan
| | - Akinobu Hayashi
- Research Laboratories, KOSÉ Corporation, 48-18 Sakae-cho, Kita-ku, Tokyo 114-0005, Japan
| | - Hidetoshi Tokuyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Seiichi Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
18
|
Albright V, Palanisamy A, Zhou Q, Selin V, Sukhishvili SA. Functional Surfaces through Controlled Assemblies of Upper Critical Solution Temperature Block and Star Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10677-10688. [PMID: 30346775 DOI: 10.1021/acs.langmuir.8b02535] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/08/2023]
Abstract
Endowing surfaces with multiple advanced functionalities, such as temperature-controlled swelling or the triggered release of functional small molecules, is attractive for a large variety of applications ranging from smart textiles to advanced biomedical applications. This Invited Feature Article summarizes recent advances in the development of upper critical solution temperature (UCST) behavior of copolymers in aqueous solutions and compares the fundamental differences between lower critical solution temperature (LCST) and UCST transitions. The effect of polymer chemistry and architecture on UCST transitions is discussed for block copolymer micelles (BCMs) and star polymers in solution and assembled at surfaces. The inclusion of such nanocontainers (i.e., BCMs and star polymers) in layer-by-layer (LbL) coatings and how to control their responsive behavior through deposition conditions and binding partners is explored. Finally, the inclusion and temperature-triggered release of functional small molecules is explored for nanocontainers in LbL coatings. Taken together, UCST nanocontainers containing LbL films are promising building blocks for the development of new generations of practical, functional surface coatings.
Collapse
Affiliation(s)
- Victoria Albright
- Department of Materials Science and Engineering , Texas A&M University , 575 Ross Street , College Station , Texas 77843 , United States
| | - Anbazhagan Palanisamy
- Department of Materials Science and Engineering , Texas A&M University , 575 Ross Street , College Station , Texas 77843 , United States
| | - Qing Zhou
- Department of Materials Science and Engineering , Texas A&M University , 575 Ross Street , College Station , Texas 77843 , United States
| | - Victor Selin
- Department of Materials Science and Engineering , Texas A&M University , 575 Ross Street , College Station , Texas 77843 , United States
| | - Svetlana A Sukhishvili
- Department of Materials Science and Engineering , Texas A&M University , 575 Ross Street , College Station , Texas 77843 , United States
| |
Collapse
|
19
|
Takebuchi H, Kubosawa H, Jin RH. Synthesis and Thermo-responsiveness of Double Hydrophilic Block Copolymers with PNIPAM Coils and Poly(methyloxazoline)/Poly(ethyleneimine) Combs. CHEM LETT 2019. [DOI: 10.1246/cl.190204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
Affiliation(s)
- Haruka Takebuchi
- Department of Material and Life Chemistry, Kanagawa University, 3-2-7 Rokkakubashi, Yokohama, Kanagawa 221-8686, Japan
| | - Hiroki Kubosawa
- Department of Material and Life Chemistry, Kanagawa University, 3-2-7 Rokkakubashi, Yokohama, Kanagawa 221-8686, Japan
| | - Ren-Hua Jin
- Department of Material and Life Chemistry, Kanagawa University, 3-2-7 Rokkakubashi, Yokohama, Kanagawa 221-8686, Japan
| |
Collapse
|
20
|
Affiliation(s)
- Chuanzhuang Zhao
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Louis Dolmans
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| | - X. X. Zhu
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
21
|
Zheng Z, Zhang L, Ling Y, Tang H. Triblock copolymers containing UCST polypeptide and poly(propylene glycol): Synthesis, thermoresponsive properties, and modification of PVA hydrogel. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
|
22
|
Huang B, Jiang J, Kang M, Liu P, Sun H, Li BG, Wang WJ. Synthesis of block cationic polyacrylamide precursors using an aqueous RAFT dispersion polymerization. RSC Adv 2019; 9:12370-12383. [PMID: 35515873 PMCID: PMC9063656 DOI: 10.1039/c9ra02716e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 11/21/2022] Open
Abstract
Synthesis of cationic polyacrylamides (CPAMs) by introducing cationic polymer precursors followed by chain extension of acrylamide (AM) homopolymer blocks via RAFT polymerization is a promising approach for engineering high-performance CPAMs. However, the aqueous solution polymerization of AM usually leads to high viscosity, thus limiting the solid content in the polymerization system. Herein a novel approach is introduced that uses a random copolymer of AM and methacryloxyethyltrimethyl ammonium chloride (DMC) as a macro RAFT chain transfer agent (mCTA) and stabilizer for aqueous RAFT dispersion polymerization of AM. The AM/DMC random copolymers synthesized by RAFT solution polymerization, having narrow dispersities (Đ s) at different molecular weights and cationic degrees (C s), could serve as the mCTA, which was confirmed by mCTA chain extension in aqueous solution polymerization of AM under different C s, solid contents, AM addition contents, extended PAM block lengths, and mCTA chain lengths. The block CPAMs had a Đ value of less than 1.2. A model was developed using the method of moments with consideration of the diffusion control effect, for further understanding the chain extension kinetics. Predicted polymerization kinetics provided an accurate fit of the experimental data. The AM/DMC random copolymers were further used for aqueous RAFT dispersion polymerization of AM under different polymerization temperatures, C s, and mCTA chain lengths. The resulting products had a milky appearance, and the block copolymers had Đ s of less than 1.3. Higher C s and longer chain lengths on mCTAs were beneficial for stabilizing the polymerization systems and produced smaller particle sizes and less particle aggregation. The products remained stable at room temperature storage for more than a month. The results indicate that aqueous RAFT dispersion polymerization using random copolymers of AM and DMC at moderate cationic degrees as a stabilizer and mCTA is a suitable approach for synthesizing CPAM block precursors at an elevated solid content.
Collapse
Affiliation(s)
- Bo Huang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University 38 Zheda Road Hangzhou 310027 China
| | - Jie Jiang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University 38 Zheda Road Hangzhou 310027 China
| | - Mutian Kang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University 38 Zheda Road Hangzhou 310027 China
| | - Pingwei Liu
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University 38 Zheda Road Hangzhou 310027 China .,Institute of Zhejiang University - Quzhou 78 Jiuhua Boulevard North Quzhou China 324000
| | - Hailong Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University 24 South Section 1, Yihuan Road Chengdu China 610064
| | - Bo-Geng Li
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University 38 Zheda Road Hangzhou 310027 China
| | - Wen-Jun Wang
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University 38 Zheda Road Hangzhou 310027 China .,Institute of Zhejiang University - Quzhou 78 Jiuhua Boulevard North Quzhou China 324000
| |
Collapse
|
23
|
Dai W, Zhu X, Zhang J, Zhao Y. Temperature and solvent isotope dependent hierarchical self-assembly of a heterografted block copolymer. Chem Commun (Camb) 2019; 55:5709-5712. [PMID: 31033979 DOI: 10.1039/c9cc01430f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/29/2023]
Abstract
A heterografted block copolymer with doubly thermoresponsive grafts is designed to address the challenge in hierarchical self-assembly. Upon heating, solvent isotope dependent morphology transitions from spheres to nanobowls, vesicles, disks, nanosheets, nanoribbons and hyperbranched micelles can be achieved. The strategy provides a general platform to prepare diverse thermoreversible nano-objects.
Collapse
Affiliation(s)
- Wenxue Dai
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | | | | | | |
Collapse
|
24
|
Käfer F, Pretscher M, Agarwal S. Tuning the Phase Transition from UCST-Type to LCST-Type by Composition Variation of Polymethacrylamide Polymers. Macromol Rapid Commun 2018; 39:e1800640. [DOI: 10.1002/marc.201800640] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2018] [Revised: 09/19/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Florian Käfer
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces, Universitätsstrasse 30; 95440 Bayreuth Germany
| | - Martin Pretscher
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces, Universitätsstrasse 30; 95440 Bayreuth Germany
| | - Seema Agarwal
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces, Universitätsstrasse 30; 95440 Bayreuth Germany
| |
Collapse
|
25
|
Zhou Q, Palanisamy A, Albright V, Sukhishvili SA. Enzymatically degradable star polypeptides with tunable UCST transitions in solution and within layer-by-layer films. Polym Chem 2018. [DOI: 10.1039/c8py00939b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/23/2023]
Abstract
Enzymatically degradable star polypeptides exhibit robust UCST-type transitions in aqueous solution and within layer-by-layer assembled films.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Materials Science and Engineering
- Texas A&M University
- College Station
- USA
| | - Anbazhagan Palanisamy
- Department of Materials Science and Engineering
- Texas A&M University
- College Station
- USA
| | - Victoria Albright
- Department of Materials Science and Engineering
- Texas A&M University
- College Station
- USA
| | | |
Collapse
|