1
|
Esmailzadeh F, Taheri-Ledari R, Salehi MM, Zarei-Shokat S, Ganjali F, Mohammadi A, Zare I, Kashtiaray A, Jalali F, Maleki A. Bonding states of gold/silver plasmonic nanostructures and sulfur-containing active biological ingredients in biomedical applications: a review. Phys Chem Chem Phys 2024; 26:16407-16437. [PMID: 38807475 DOI: 10.1039/d3cp04131j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
As one of the most instrumental components in the architecture of advanced nanomedicines, plasmonic nanostructures (mainly gold and silver nanomaterials) have been paid a lot of attention. This type of nanomaterial can absorb light photons with a specific wavelength and generate heat or excited electrons through surface resonance, which is a unique physical property. In innovative biomaterials, a significant number of theranostic (therapeutic and diagnostic) materials are produced through the conjugation of thiol-containing ingredients with gold and silver nanoparticles (Au and Ag NPs). Hence, it is essential to investigate Au/Ag-S interfaces precisely and determine the exact bonding states in the active nanobiomaterials. This study intends to provide useful insights into the interactions between Au/Ag NPs and thiol groups that exist in the structure of biomaterials. In this regard, the modeling of Au/Ag-S bonding in active biological ingredients is precisely reviewed. Then, the physiological stability of Au/Ag-based plasmonic nanobioconjugates in real physiological environments (pharmacokinetics) is discussed. Recent experimental validation and achievements of plasmonic theranostics and radiolabelled nanomaterials based on Au/Ag-S conjugation are also profoundly reviewed. This study will also help researchers working on biosensors in which plasmonic devices deal with the thiol-containing biomaterials (e.g., antibodies) inside blood serum and living cells.
Collapse
Affiliation(s)
- Farhad Esmailzadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd, Shiraz 7178795844, Iran
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Farinaz Jalali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
2
|
Kou B, Wang Z, Mousavi S, Wang P, Ke Y. Dynamic Gold Nanostructures Based on DNA Self Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308862. [PMID: 38143287 DOI: 10.1002/smll.202308862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/10/2023] [Indexed: 12/26/2023]
Abstract
The combination of DNA nanotechnology and Nano Gold (NG) plasmon has opened exciting possibilities for a new generation of functional plasmonic systems that exhibit tailored optical properties and find utility in various applications. In this review, the booming development of dynamic gold nanostructures are summarized, which are formed by DNA self-assembly using DNA-modified NG, DNA frameworks, and various driving forces. The utilization of bottom-up strategies enables precise control over the assembly of reversible and dynamic aggregations, nano-switcher structures, and robotic nanomachines capable of undergoing on-demand, reversible structural changes that profoundly impact their properties. Benefiting from the vast design possibilities, complete addressability, and sub-10 nm resolution, DNA duplexes, tiles, single-stranded tiles and origami structures serve as excellent platforms for constructing diverse 3D reconfigurable plasmonic nanostructures with tailored optical properties. Leveraging the responsive nature of DNA interactions, the fabrication of dynamic assemblies of NG becomes readily achievable, and environmental stimulation can be harnessed as a driving force for the nanomotors. It is envisioned that intelligent DNA-assembled NG nanodevices will assume increasingly important roles in the realms of biological, biomedical, and nanomechanical studies, opening a new avenue toward exploration and innovation.
Collapse
Affiliation(s)
- Bo Kou
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Zhichao Wang
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Shikufa Mousavi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30322, USA
| | - Pengfei Wang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30322, USA
| |
Collapse
|
3
|
Chen L, Liu Y, Guo W, Liu Z. Light responsive nucleic acid for biomedical application. EXPLORATION (BEIJING, CHINA) 2022; 2:20210099. [PMID: 37325506 PMCID: PMC10190984 DOI: 10.1002/exp.20210099] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/03/2022] [Indexed: 06/16/2023]
Abstract
Nucleic acids are widely used in biomedical applications because of their programmability and biocompatibility. The light responsive nucleic acids have attracted wide attention due to their remote control and high spatiotemporal resolution. In this review, we summarized the latest developments in biomedicine of light responsive molecules. The molecules which confer light responsive properties to nucleic acids were summarized. The binding sites of molecules to nucleic acids, the induced structural changes, and functional regulation of nucleic acids were reviewed. Then, the biomedical applications of light responsive nucleic acids were listed, such as drug delivery, biosensing, optogenetics, gene editing, etc. Finally, the challenges were discussed and possible future directions of light-responsive nucleic acids were proposed.
Collapse
Affiliation(s)
- Liwei Chen
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Yanfei Liu
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Weisheng Guo
- Department of Minimally Invasive Interventional RadiologyGuangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdong ProvinceP. R. China
| | - Zhenbao Liu
- Department of PharmaceuticsXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan ProvinceP. R. China
- Molecular Imaging Research Center of Central South UniversityChangshaHunan ProvinceP. R. China
| |
Collapse
|
4
|
Vargas-Lara F, Starr FW, Douglas JF. Solution properties of spherical gold nanoparticles with grafted DNA chains from simulation and theory. NANOSCALE ADVANCES 2022; 4:4144-4161. [PMID: 36285224 PMCID: PMC9514572 DOI: 10.1039/d2na00377e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/30/2022] [Indexed: 06/16/2023]
Abstract
There has been a rapidly growing interest in the use of functionalized Au nanoparticles (NPs) as platforms in multiple applications in medicine and manufacturing. The sensing and targeting characteristics of these NPs, and the realization of precisely organized structures in manufacturing applications using such NPs, depend on the control of their surface functionalization. NP functionalization typically takes the form of polymer grafted layers, and a detailed knowledge of the chemical and structural properties of these layers is required to molecularly engineer the particle characteristics for specific applications. However, the prediction and experimental determination of these properties to enable the rational engineering of these particles is a persistent problem in the development of this class of materials. To address this situation, molecular dynamic simulations were performed based on a previously established coarse-grained single-stranded DNA (ssDNA) model to determine basic solution properties of model ssDNA-grafted NP-layers under a wide range of conditions. In particular, we emphasize the calculation of the hydrodynamic radius for ssDNA-grafted Au NPs as a function of structural parameters such as ssDNA length, NP core size, and surface coverage. We also numerically estimate the radius of gyration and the intrinsic viscosity of these NPs, which in combination with hydrodynamic radius estimates, provide valuable information about the fluctuating structure of the grafted polymer layers. We may then understand the origin of the commonly reported variation in effective NP "size" by different measurement methods, and then exploit this information in connection to material design and characterization in connection with the ever-growing number of applications utilizing polymer-grafted NPs.
Collapse
Affiliation(s)
- Fernando Vargas-Lara
- Departments of Physics & Molecular Biology & Biochemistry, Wesleyan University Middletown CT 06459 USA
| | - Francis W Starr
- Departments of Physics & Molecular Biology & Biochemistry, Wesleyan University Middletown CT 06459 USA
| | - Jack F Douglas
- Materials Science & Engineering Division, National Institute of Standards and Technology Gaithersburg Maryland 20899 USA
| |
Collapse
|
5
|
Sun JP, Ren YT, Liu ZX, He MJ, Gao BH, Qi H. Dependence of the Nonlinear Photoacoustic Response of Gold Nanoparticles on the Heat-Transfer Process. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:3489-3501. [PMID: 35572805 PMCID: PMC9098176 DOI: 10.1021/acs.jpcc.1c09245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/04/2022] [Indexed: 05/05/2023]
Abstract
Photoacoustic (PA) imaging using the nonlinear PA response of gold nanoparticles (GNPs) can effectively attenuate the interference from background noise caused by biomolecules (e.g., hemoglobin), thus offering a highly potential noninvasive biomedical imaging method. However, the mechanism of the nonlinear PA response of GNPs based on the thermal expansion mechanism, especially the effect of heat-transfer ability, still lacks quantitative investigation. Therefore, this work investigated the effect of heat-transfer ability on the nonlinear PA response of GNPs using the critical energy and fluence concept, taking into account the Au@SiO2 core-shell nanoparticles (weakened heat transfer) and gold nanochains (enhanced heat transfer). The results showed that the stronger the heat transferability, the smaller the critical energy, indicating that the nonlinear PA response of different nanoparticles cannot be contrasted directly through the critical energy. Moreover, the critical fluence can directly contrast the proportion of nonlinear components in the PA response of different GNPs as governed by the combined effect of heat transferability and photothermal conversion ability.
Collapse
Affiliation(s)
- Jian-Ping Sun
- School
of Energy Science and Engineering, Harbin
Institute of Technology, Harbin 150001, China
- Key
Laboratory of Aerospace Thermophysics, Ministry
of Industry and Information Technology, Harbin 150001, China
| | - Ya-Tao Ren
- School
of Energy Science and Engineering, Harbin
Institute of Technology, Harbin 150001, China
- Key
Laboratory of Aerospace Thermophysics, Ministry
of Industry and Information Technology, Harbin 150001, China
- Faculty
of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Zi-Xuan Liu
- School
of Energy Science and Engineering, Harbin
Institute of Technology, Harbin 150001, China
- Key
Laboratory of Aerospace Thermophysics, Ministry
of Industry and Information Technology, Harbin 150001, China
| | - Ming-Jian He
- School
of Energy Science and Engineering, Harbin
Institute of Technology, Harbin 150001, China
- Key
Laboratory of Aerospace Thermophysics, Ministry
of Industry and Information Technology, Harbin 150001, China
| | - Bao-Hai Gao
- School
of Energy Science and Engineering, Harbin
Institute of Technology, Harbin 150001, China
- Key
Laboratory of Aerospace Thermophysics, Ministry
of Industry and Information Technology, Harbin 150001, China
| | - Hong Qi
- School
of Energy Science and Engineering, Harbin
Institute of Technology, Harbin 150001, China
- Key
Laboratory of Aerospace Thermophysics, Ministry
of Industry and Information Technology, Harbin 150001, China
| |
Collapse
|
6
|
Zhang C, Li D, Zhang G, Wang X, Mao L, Gan Q, Ding T, Xu H. Switching plasmonic nanogaps between classical and quantum regimes with supramolecular interactions. SCIENCE ADVANCES 2022; 8:eabj9752. [PMID: 35119919 PMCID: PMC8816333 DOI: 10.1126/sciadv.abj9752] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In the realm of extreme nanophotonics, nanogap plasmons support reliable field enhancements up to 1000, which provide unique opportunities to access a single molecule for strong coupling and a single atom for quantum catalysis. The quantum plasmonics are intriguing but difficult to modulate largely because of the lack of proper spacers that can reversibly actuate the sub-1-nm gaps. Here, we demonstrate that supramolecular systems made of oligoamide sequences can reversibly switch the gap plasmons of Au nanoparticles on mirror between classical and quantum tunneling regimes via supramolecular interactions. The results reveal detailed plasmon shift near the quantum tunneling limit, which fits well with both classical- and quantum-corrected models. In the quantum tunneling regime, we demonstrate that plasmonic hot electron tunneling can further blue shift the quantum plasmons because of the increased conductance in the nanogaps, making it a promising prototype of optical tunable quantum plasmonic devices.
Collapse
Affiliation(s)
- Chi Zhang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Dongyao Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guangdi Zhang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xujie Wang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Li Mao
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Quan Gan
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Corresponding author. (T.D.); (Q.G.)
| | - Tao Ding
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Corresponding author. (T.D.); (Q.G.)
| | - Hongxing Xu
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
- School of Microelectronics, Wuhan University, Wuhan 430072, China
| |
Collapse
|
7
|
Heintz J, Markešević N, Gayet EY, Bonod N, Bidault S. Few-Molecule Strong Coupling with Dimers of Plasmonic Nanoparticles Assembled on DNA. ACS NANO 2021; 15:14732-14743. [PMID: 34469108 DOI: 10.1021/acsnano.1c04552] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hybrid nanostructures, in which a known number of quantum emitters are strongly coupled to a plasmonic resonator, should feature optical properties at room temperature such as few-photon nonlinearities or coherent superradiant emission. We demonstrate here that this coupling regime can only be reached with dimers of gold nanoparticles in stringent experimental conditions, when the interparticle spacing falls below 2 nm. Using a short transverse DNA double-strand, we introduce five dye molecules in the gap between two 40 nm gold particles and actively decrease its length down to sub-2 nm values by screening electrostatic repulsion between the particles at high ionic strengths. Single-nanostructure scattering spectroscopy then evidence the observation of a strong-coupling regime in excellent agreement with electrodynamic simulations. Furthermore, we highlight the influence of the planar facets of polycrystalline gold nanoparticles on the probability of observing strongly coupled hybrid nanostructures.
Collapse
Affiliation(s)
- Jeanne Heintz
- Institut Langevin, ESPCI Paris, Université PSL, CNRS, 1 rue Jussieu, 75005 Paris, France
| | - Nemanja Markešević
- Institut Langevin, ESPCI Paris, Université PSL, CNRS, 1 rue Jussieu, 75005 Paris, France
| | - Elise Y Gayet
- Institut Langevin, ESPCI Paris, Université PSL, CNRS, 1 rue Jussieu, 75005 Paris, France
| | - Nicolas Bonod
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 52 Avenue Escadrille Normandie Niemen, 13013 Marseille, France
| | - Sébastien Bidault
- Institut Langevin, ESPCI Paris, Université PSL, CNRS, 1 rue Jussieu, 75005 Paris, France
| |
Collapse
|
8
|
You M, Jia P, He X, Wang Z, Feng S, Ren Y, Li Z, Cao L, Gao B, Yao C, Singamaneni S, Xu F. Quantifying and Adjusting Plasmon-Driven Nano-Localized Temperature Field around Gold Nanorods for Nucleic Acids Amplification. SMALL METHODS 2021; 5:e2001254. [PMID: 34928096 DOI: 10.1002/smtd.202001254] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/19/2021] [Indexed: 06/14/2023]
Abstract
Fast nucleic acid (NA) amplification has found widespread biomedical applications, where high thermocycling rate is the key. The plasmon-driven nano-localized thermocycling around the gold nanorods (AuNRs) is a promising alternative, as the significantly reduced reaction volume enables a rapid temperature response. However, quantifying and adjusting the nano-localized temperature field remains challenging for now. Herein, a simple method is developed to quantify and adjust the nano-localized temperature field around AuNRs by combining experimental measurement and numerical simulation. An indirect method to measure the surface temperature of AuNRs is first developed by utilizing the temperature-dependent stability of Authiol bond. Meanwhile, the relationship of AuNRs' surface temperature with the AuNRs concentration and laser intensity, is also studied. In combination with thermal diffusion simulation, the nano-localized temperature field under the laser irradiation is obtained. The results show that the restricted reaction volume (≈aL level) enables ultrafast thermocycling rate (>104 °C s-1 ). At last, a duplex-specific nuclease (DSN)-mediated isothermal amplification is successfully demonstrated within the nano-localized temperature field. It is envisioned that the developed method for quantifying and adjusting the nano-localized temperature field around AuNRs is adaptive for various noble metal nanostructures and will facilitate the development of the biochemical reaction in the nano-localized environment.
Collapse
Affiliation(s)
- Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Pengpeng Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Xiaocong He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Zheyu Wang
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
| | - Shangsheng Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yulin Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Zedong Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Lei Cao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Bin Gao
- Department of Endocrinology, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi, 710038, P. R. China
| | - Chunyan Yao
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| |
Collapse
|
9
|
Nan J, Zhu S, Ye S, Sun W, Yue Y, Tang X, Shi J, Xu X, Zhang J, Yang B. Ultrahigh-Sensitivity Sandwiched Plasmon Ruler for Label-Free Clinical Diagnosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905927. [PMID: 31782568 DOI: 10.1002/adma.201905927] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Optical biosensors, especially those based on plasmonic structures, have emerged recently as a potential tool for disease diagnostics. Plasmonic biosensors have demonstrated impressive benefits for the label-free detection of trace biomarkers in human serum. However, widespread applications of these technologies are hindered because of their insufficient sensitivity, their relatively complex chemical immobilization processes, and the use of prism couplers. Accordingly, a sandwiched plasmon ruler (SW-PR) based on a Au nanohole array with ultrahigh sensitivity arising from the plasmonic coupling effect is developed. Highly confined surface charges caused by Bloch wave surface plasmon polarizations substantially increase the coupling efficiency. This platform exhibits thickness sensitivity as high as 61 nm nm-1 and can detect at least 200 000-fold lower analyte concentrations than a nanowell sensing platform with the same wavelength shift. Additionally, the sandwiched plasmonic biosensor allows precise and label-free testing of clinical biomarkers, namely C-reactive protein and procalcitonin, in patient serum samples without requiring a sophisticated prism coupler, extra antibodies, or a chemical immobilization technique. This study yields new insight into the structural design of plasmon rulers and will open exciting avenues for disease diagnosis and therapy follow-up at the point-of-care.
Collapse
Affiliation(s)
- Jingjie Nan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, P. R. China
| | - Shunsheng Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Weihong Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Ying Yue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Xiaoduo Tang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Jingwei Shi
- Department of Clinical Laboratory, China-Japan Union Hospital of Jilin University, Changchun, 130033, P. R. China
| | - Xuesong Xu
- Department of Clinical Laboratory, China-Japan Union Hospital of Jilin University, Changchun, 130033, P. R. China
| | - Junhu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130021, P. R. China
| |
Collapse
|
10
|
Jeong HH, Choi E, Ellis E, Lee TC. Recent advances in gold nanoparticles for biomedical applications: from hybrid structures to multi-functionality. J Mater Chem B 2019. [DOI: 10.1039/c9tb00557a] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hybrid gold nanoparticles for biomedical applications are reviewed in the context of a novel classification framework and illustrated by recent examples.
Collapse
Affiliation(s)
- Hyeon-Ho Jeong
- Max Planck Institute for Intelligent Systems
- 70569 Stuttgart
- Germany
- Cavendish Laboratory
- University of Cambridge
| | - Eunjin Choi
- Max Planck Institute for Intelligent Systems
- 70569 Stuttgart
- Germany
| | - Elizabeth Ellis
- Department of Chemistry
- University College London (UCL)
- WC1H 0AJ London
- UK
- Institute for Materials Research and Engineering (IMRE)
| | - Tung-Chun Lee
- Department of Chemistry
- University College London (UCL)
- WC1H 0AJ London
- UK
- Institute for Materials Discovery
| |
Collapse
|
11
|
Lermusiaux L, Funston AM. Plasmonic isomers via DNA-based self-assembly of gold nanoparticles. NANOSCALE 2018; 10:19557-19567. [PMID: 30324955 DOI: 10.1039/c8nr05509b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Developments in DNA nanotechnology offer control of the self-assembly of materials into discrete nanostructures. Within this paradigm, pre-assembled DNA origami with hundreds of DNA strands allows for precise and programmable spatial positioning of functionalised nanoparticles. We propose an alternative approach to construct multiple, structurally different, nanoparticle assemblies from just a few complementary nanoparticle-functionalised DNA strands. The approach exploits local minima in the potential energy landscape of hybridised nanoparticle-DNA structures by employing kinetic control of the assembly. Using a four-strand DNA template, we synthesise five different 3D gold nanoparticle (plasmonic) tetrameric isomers, akin to molecular structural isomers. The number of different structures formed using this approach for a set of DNA strands represents a combinatorial library, which we summarise in a hybridisation pathway tree and use to achieve deposition of tetrahedral assemblies onto substrates in high yield. The ability to program nanoparticle self-assembly pathways gives unprecedented access to unique plasmonic nanostructures.
Collapse
Affiliation(s)
- Laurent Lermusiaux
- ARC Centre of Excellence in Exciton Science and School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | | |
Collapse
|