1
|
Brodie CN, Goodfellow AS, Andrews MJ, Owen AE, Bühl M, Kumar A. Direct synthesis of partially ethoxylated branched polyethylenimine from ethanolamine. Nat Commun 2024; 15:6253. [PMID: 39048574 PMCID: PMC11269587 DOI: 10.1038/s41467-024-50403-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
We report here a method to make a branched and partially ethoxylated polyethyleneimine derivative directly from ethanolamine. The polymerization reaction is catalysed by a pincer complex of Earth-abundant metal, manganese, and produces water as the only byproduct. Industrial processes to produce polyethyleneimines involve the transformation of ethanolamine to a highly toxic chemical, aziridine, by an energy-intensive/waste-generating process followed by the ring-opening polymerization of aziridine. The reported method bypasses the need to produce a highly toxic intermediate and presents advantages over the current state-of-the-art. We propose that the polymerization process follows a hydrogen borrowing pathway that involves (a) dehydrogenation of ethanolamine to form 2-aminoacetaldehyde, (b) dehydrative coupling of 2-aminoacetaldehyde with ethanolamine to form an imine derivative, and (c) subsequent hydrogenation of imine derivative to form alkylated amines.
Collapse
Affiliation(s)
- Claire N Brodie
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Alister S Goodfellow
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Matthew J Andrews
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Aniekan E Owen
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Michael Bühl
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Amit Kumar
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| |
Collapse
|
2
|
Martinez AA, Arneodo Larochette PP, Gennari FC, Gasnier A. The Structure-Function Relationship of Branched Polyethylenimine Impregnated over Mesoporous Carbon Aerogels: An In-Depth Thermogravimetric Insight. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17133-17145. [PMID: 37975861 DOI: 10.1021/acs.langmuir.3c02043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
We present a comprehensive thermogravimetric analysis (TGA) of polyethylenimine (PEI)-impregnated resorcinol-formaldehyde (RF) aerogels. While numerous studies focus on PEI-impregnated SBA, RF materials have been less examined, despite their interest and specificities. As most articles on PEI-impregnated porous materials follow typical experimental methods defined for SBA, particularities of RF-PEI materials could remain unheeded. The design of nonisothermal TGA protocols, completed with nitrogen isotherms, based on the systematic filling of the matrix delivers a fundamental understanding of the relationship between the structure and function. This study demonstrates (i) the competition between the matrix and PEI for CO2-physisorption (φ) and CO2-chemisorption (χ), (ii) the hysteresis ([Formula: see text]) of CO2 capture at low temperature attributed to the kinetic (K) hindrance of CO2 diffusion (D) through PEI film/plugs limiting the chemisorption, and (iii) the thermodynamic (θ) equilibrium limiting the capture at high temperature. At variance with SBA-PEI materials, the first layers of PEI in RF are readily available for CO2 capture given that this matrix does not covalently bind PEI as SBA. A facile method allows the discrimination between physi- and chemisorption, exhibiting how the former decreases with PEI coverage. The CO2 capture hysteresis, while seldom introduced or discussed, underlines that the commonly accepted operating temperature of the "maximum capture" is based on an incomplete experiment. Through isotherm adsorption analysis, we correlate the evolution of this maximum to the morphological distribution of PEI. This contribution highlights the specificities of RF-PEI and the advantages of our TGA protocol in understanding the structure/function relationship of this kind of material by avoiding the typical direct applications of SBA-specific protocols. The method is straightforward, does not need large-scale facilities, and is applicable to other materials. Its easiness and rapidness are suited to high-volume studies, befitting for the comprehensive evaluation of interacting factors such as the matrix's nature, pore size, and PEI weight.
Collapse
Affiliation(s)
- Alejandra A Martinez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Centro Atómico Bariloche (CNEA), S. C. de Bariloche, Río Negro R8402AGP, Argentina
- Instituto de Nanociencia y Nanotecnología, S. C. de Bariloche, Río Negro R8402AGP, Argentina
| | - Pierre P Arneodo Larochette
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Centro Atómico Bariloche (CNEA), S. C. de Bariloche, Río Negro R8402AGP, Argentina
- Instituto Balseiro, Universidad Nacional de Cuyo, S. C. de Bariloche, Río Negro R8402AGP, Argentina
| | - Fabiana C Gennari
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Centro Atómico Bariloche (CNEA), S. C. de Bariloche, Río Negro R8402AGP, Argentina
- Instituto Balseiro, Universidad Nacional de Cuyo, S. C. de Bariloche, Río Negro R8402AGP, Argentina
| | - Aurelien Gasnier
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Centro Atómico Bariloche (CNEA), S. C. de Bariloche, Río Negro R8402AGP, Argentina
- Instituto de Nanociencia y Nanotecnología, S. C. de Bariloche, Río Negro R8402AGP, Argentina
| |
Collapse
|
3
|
Chen J, Moon HJ, Kim KI, Choi JI, Narayanan P, Sakwa-Novak MA, Jones CW, Jang SS. Distribution and Transport of CO 2 in Hyperbranched Poly(ethylenimine)-Loaded MCM-41: A Molecular Dynamics Simulation Approach. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43678-43690. [PMID: 37681296 PMCID: PMC10520917 DOI: 10.1021/acsami.3c07040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
Fossil fuel use is accelerating climate change, driving the need for efficient CO2 capture technologies. Solid adsorption-based direct air capture (DAC) of CO2 has emerged as a promising mode for CO2 removal from the atmosphere due to its potential for scalability. Sorbents based on porous supports incorporating oligomeric amines in their pore spaces are widely studied. In this study, we investigate the intermolecular interactions and adsorption of CO2 and H2O molecules in hyperbranched poly(ethylenimine) (HB-PEI) functionalized MCM-41 systems to understand the distribution and transport of CO2 and H2O molecules. Density Functional Theory (DFT) is employed to compute the binding energies of CO2 and H2O molecules with HB-PEI and MCM-41 and to develop force field parameters for molecular dynamics (MD) simulations. The MD simulations are performed to examine the distribution and transport of CO2 and H2O molecules as a function of the HB-PEI content. The study finds that an HB-PEI content of approximately 34 wt % is thermodynamically favorable, with an upper limit of HB-PEI loading between 45 and 50 wt %. The distribution of CO2 and H2O molecules is primarily determined by their adsorptive binding energies, for which H2O molecules dominate the occupation of binding sites due to their strong affinity with silanol groups on MCM-41 and amine groups of HB-PEI. The HB-PEI content has a considerable impact on the diffusion of CO2 and H2O molecules. Furthermore, a larger number of water molecules (higher relative humidity) reduces the correlation of CO2 with the MCM-41 pore surface while enhancing the correlation of CO2 with the amine groups of the HB-PEI. Overall, the presence of H2O molecules increases the CO2 correlation with the amine groups and also the CO2 transport within HB-PEI-loaded MCM-41, meaning that the presence of H2O enhances the CO2 capture in the HB-PEI-loaded MCM-41. These findings are consistent with experimental observations of the impact of increasing humidity on CO2 capture while providing new, molecular-level explanations for the macroscopic experimental findings.
Collapse
Affiliation(s)
- Junhe Chen
- Computational
NanoBio Technology Laboratory, School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332-0245, United States
| | - Hyun June Moon
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Kyung Il Kim
- Computational
NanoBio Technology Laboratory, School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332-0245, United States
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Ji Il Choi
- Computational
NanoBio Technology Laboratory, School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332-0245, United States
| | - Pavithra Narayanan
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Miles A. Sakwa-Novak
- Global
Thermostat LLC, 10275
E106th Avenue, Brighton, Colorado 80601, United States
| | - Christopher W. Jones
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Seung Soon Jang
- Computational
NanoBio Technology Laboratory, School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332-0245, United States
- Strategic
Energy Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Sun S, Zhang Z, Xiang Y, Cao M, Yu D. Amino Acid-Mediated Synthesis of the ZIF-8 Nanozyme That Reproduces Both the Zinc-Coordinated Active Center and Hydrophobic Pocket of Natural Carbonic Anhydrase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1621-1630. [PMID: 35042338 DOI: 10.1021/acs.langmuir.1c03118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The zeolitic imidazolate framework-8 (ZIF-8) nanozyme has been synthesized using hydrophobic amino acid (AA) to regulate crystal growth. The as-synthesized ZIF-8 reproduces both the structural and functional properties of natural carbonic anhydrase (CA). Structurally, Zn2+/2-methylimidazole coordinated units mimic very well the active center of CA while the hydrophobic microdomains of the adsorbed AA simulate the CA hydrophobic pocket. Functionally, the nanozymes show excellent CA-like esterase activity by giving specific enzyme activity of 0.22 U mg-1 at 25 °C in the case of Val-ZIF-8. More strikingly, such nanozymes are superior to natural CA by having excellent hydrothermal stability, which can give highly enhanced esterase activity with increasing temperature. The specific enzyme activity of Val-ZIF-8 at 80 °C is about 25 times higher than that at 25 °C. In addition, AA-ZIF-8 also shows an excellent catalytic efficiency toward carbon dioxide (CO2) hydration. This study puts forward the important role of hydrophobic microdomains in biomimetic nanozymes for the first time and develops a facile and mild method for the synthesis of nanozymes with controlled morphology and size to achieve excellent catalytic efficiency.
Collapse
Affiliation(s)
- Shixuan Sun
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Zijin Zhang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yong Xiang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Meiwen Cao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Daoyong Yu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| |
Collapse
|
5
|
Branched versus Linear Structure: Lowering the CO2 Desorption Temperature of Polyethylenimine-Functionalized Silica Adsorbents. ENERGIES 2022. [DOI: 10.3390/en15031075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lowering the regeneration temperature for solid CO2-capture materials is one of the critical tasks for economizing CO2-capturing processes. Based on reported pKa values and nucleophilicity, we compared two different polyethylenimines (PEIs): branched PEI (BPEI) and linear PEI (LPEI). LPEI outperformed BPEI in terms of adsorption and desorption properties. Because LPEI is a solid below 73–75 °C, even a high loading amount of LPEI can effectively adsorb CO2 without diffusive barriers. Temperature-programmed desorption (TPD) demonstrated that the desorption peak top dropped to 50.8 °C for LPEI, compared to 78.0 °C for BPEI. We also revisited the classical adsorption model of CO2 on secondary amines by using in situ modulation excitation IR spectroscopy, and proposed a new adsorption configuration, R1(R2)-NCOOH. Even though LPEI is more expensive than BPEI, considering the long-term operation of a CO2-capturing system, the low regeneration temperature makes LPEI attractive for industrial applications.
Collapse
|
6
|
Polyethylenimine-based catalysts for the addition of carbon dioxide to epoxides: an effect of substituents. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3248-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Assis Silva FC, da Costa Lourenço T, van der Spoel D, Aparicio S, Azevedo Dos Reis R, Costa LT. The structure of CO 2 and CH 4 at the interface of a poly(urethane urea) oligomer model from the microscopic point of view. J Chem Phys 2021; 155:044704. [PMID: 34340392 DOI: 10.1063/5.0049007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The world desperately needs new technologies and solutions for gas capture and separation. To make this possible, molecular modeling is applied here to investigate the structural, thermodynamic, and dynamical properties of a model for the poly(urethane urea) (PUU) oligomer model to selectively capture CO2 in the presence of CH4. In this work, we applied a well-known approach to derive atomic partial charges for atoms in a polymer chain based on self-consistent sampling using quantum chemistry and stochastic dynamics. The interactions of the gases with the PUU model were studied in a pure gas based system as well as in a gas mixture. A detailed structure characterization revealed high interaction of CO2 molecules with the hard segments of the PUU. Therefore, the structural and energy properties explain the reasons for the greater CO2 sorption than CH4. We find that the CO2 sorption is higher than the CH4 with a selectivity of 7.5 at 298 K for the gas mixture. We characterized the Gibbs dividing surface for each system, and the CO2 is confined for a long time at the gas-oligomer model interface. The simulated oligomer model showed performance above the 2008 Robeson's upper bound and may be a potential material for CO2/CH4 separation. Further computational and experimental studies are needed to evaluate the material.
Collapse
Affiliation(s)
| | | | - David van der Spoel
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, P.O. Box 596, SE-75124 Uppsala, Sweden
| | | | - Rodrigo Azevedo Dos Reis
- Departamento de Operações e Projetos Industriais, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciano T Costa
- MolMod-CS, Departamento de Físico-Química, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
8
|
Rother G, Tumuluri U, Huang K, Heller WT, Dai S, Carrillo JM, Sumpter BG. Interactions of an Imine Polymer with Nanoporous Silica and Carbon in Hybrid Adsorbents for Carbon Capture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4622-4631. [PMID: 33819051 DOI: 10.1021/acs.langmuir.1c00305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Efficient carbon capture from stationary point sources can be achieved using hybrid adsorbents comprising nanoporous substrates coated with imine polymers. The physical properties of the CO2-adsorbing, nanodispersed polymers are altered by their interactions with the substrate, which in turn may impact their capture capacity. We study silica and carbon nanoporous substrates with different pore morphologies that were impregnated with polymer imine with the goal of characterizing the polymer dispersions in the pores. For silica and carbon samples, the mean densities of confined poly(ethylene imine) (PEI) were measured as functions of polymer loading and temperature using small-angle neutron scattering. Strong densification is found for imine polymers imbibed in mesoporous carbon. PEI in nanoporous silica does not experience this strong densification. At high loadings, plugs form, preferably at the pore throats, and can reduce accessible porosity. CO2 capture measurements show that PEI interactions with the substrate play an important role. PEI in carbon shows the highest capture capacity at low temperatures and the lowest CO2 adsorption at high temperatures, making it well-suited for temperature swing adsorption applications.
Collapse
Affiliation(s)
- Gernot Rother
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Uma Tumuluri
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kuan Huang
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - William T Heller
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jan-Michael Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bobby G Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
9
|
Kim K, Lawler R, Moon HJ, Narayanan P, Sakwa-Novak MA, Jones CW, Jang SS. Distribution and Transport of CO 2 in Hydrated Hyperbranched Poly(ethylenimine) Membranes: A Molecular Dynamics Simulation Approach. ACS OMEGA 2021; 6:3390-3398. [PMID: 33553957 PMCID: PMC7860517 DOI: 10.1021/acsomega.0c05923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/11/2021] [Indexed: 05/20/2023]
Abstract
Hyperbranched poly(ethylenimine) (HB-PEI) has been distinguished as a promising candidate for carbon dioxide (CO2) capture. In this study, we investigate the distribution and transport of CO2 molecules in a HB-PEI membrane at various hydration levels using molecular dynamics (MD) simulations. For this, model structures consisting of amorphous HB-PEI membranes with CO2 molecules are equilibrated at various hydration levels. Under dry conditions, the primary and secondary amines are highly associated with CO2, indicating that they would participate in CO2 capture via the carbamate formation mechanism. Under hydrated conditions, the pair correlations of CO2 with the primary and secondary amines are reduced. This result suggests that the carbamate formation mechanism is less prevalent compared to dry conditions, which is also supported by CO2 residence time analysis. However, in the presence of water molecules, it is found that the CO2 molecules can be associated with both amine groups and water molecules, which would enable the tertiary amine as well as the primary and secondary amines to capture CO2 molecules via the bicarbonate formation mechanism. Through our MD simulation results, the feasibilities of different CO2 capture pathways in HB-PEI membranes are demonstrated at the molecular level.
Collapse
Affiliation(s)
- Kyung
Il Kim
- Computational
NanoBio Technology Laboratory, School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332-0245, United States
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Robin Lawler
- Computational
NanoBio Technology Laboratory, School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332-0245, United States
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Hyun June Moon
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Pavithra Narayanan
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Miles A. Sakwa-Novak
- Global
Thermostat LLC, 10275
E. 106th Ave, Brighton, Colorado 80601, United States
| | - Christopher W. Jones
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Seung Soon Jang
- Computational
NanoBio Technology Laboratory, School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332-0245, United States
- Strategic
Energy Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Institute
for Electronics and Nanotechnology, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
10
|
Production of calcium carbonate with different morphology by simultaneous CO2 capture and mineralisation. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Shahzad K, Sliem MH, Shakoor RA, Radwan AB, Kahraman R, Umer MA, Manzoor U, Abdullah AM. Electrochemical and thermodynamic study on the corrosion performance of API X120 steel in 3.5% NaCl solution. Sci Rep 2020; 10:4314. [PMID: 32152388 PMCID: PMC7063046 DOI: 10.1038/s41598-020-61139-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/12/2020] [Indexed: 11/08/2022] Open
Abstract
The present work studied the effect of temperature on the corrosion behavior of API X120 steel in a saline solution saturated with CO2 in absence and presence of polyethyleneimine (PEI) as an environmentally safe green inhibitor. The effect of PEI on the corrosion behavior of API X120 steel was investigated using destructive and non-destructive electrochemical techniques. The overall results revealed that PEI significantly decreases the corrosion rate of API X120 steel with inhibition efficiency of 94% at a concentration of 100 μmol L-1. The adsorption isotherm, activation energy and the thermodynamic parameters were deduced from the electrochemical results. It is revealed that the adsorption of PEI on API X120 steel surface follows Langmuir adsorption isotherm adopting a Physi-chemisorption mechanism. Finally, the samples were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques to elucidate the effect of aggressiveness of corrosive media on the surface morphology and the corrosion performance of API X120 steel. The surface topography result indicates that the API X120 steel interface in PEI presence is smoother than CO2 with Cl- ions or Cl- ions only. This is attributed to the compact protective film limits the aggressive ions transfer towards the metallic surface and reduces the corrosion rate. Moreover, PEI inhibition mechanism is based on its CO2 capturing ability and the PEI adsorption on the steel surface beside the siderite layer which give the PEI molecules the ability to reduce the scale formation and increase the corrosion protection due to capturing the CO2 from the brine solution.
Collapse
Affiliation(s)
- Khuram Shahzad
- Department of Materials Engineering, School of Chemical and Materials Engineering, National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Mostafa H Sliem
- Center for Advanced Materials (CAM), Qatar University, 2713, Doha, Qatar
| | - R A Shakoor
- Center for Advanced Materials (CAM), Qatar University, 2713, Doha, Qatar.
| | - A Bahgat Radwan
- Center for Advanced Materials (CAM), Qatar University, 2713, Doha, Qatar
| | - Ramazan Kahraman
- Department of Chemical Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
| | - Malik Adeel Umer
- Department of Materials Engineering, School of Chemical and Materials Engineering, National University of Science and Technology (NUST), Islamabad, Pakistan.
| | - Umair Manzoor
- Department of Materials Engineering, School of Chemical and Materials Engineering, National University of Science and Technology (NUST), Islamabad, Pakistan
| | | |
Collapse
|
12
|
Patra PK, Jaisingh A, Goel V, Luthra P, Kapur GS, Nebhani L. Comprehensive studies on polyethylenimine filled polypropylene and its potential application in carbon dioxide sequestration. POLYM ENG SCI 2019. [DOI: 10.1002/pen.25211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pratim Kumar Patra
- Department of Materials Science and EngineeringIndian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Aanchal Jaisingh
- Department of Materials Science and EngineeringIndian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Vishal Goel
- R&D DivisionIndian Oil Corporation Limited Faridabad Haryana India
| | - Priyanka Luthra
- R&D DivisionIndian Oil Corporation Limited Faridabad Haryana India
| | | | - Leena Nebhani
- Department of Materials Science and EngineeringIndian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|
13
|
Abedini A, Crabtree E, Bara JE, Turner CH. Molecular analysis of selective gas adsorption within composites of ionic polyimides and ionic liquids as gas separation membranes. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2018.08.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|