1
|
Jia Y, Yang Y, Cai X, Zhang H. Recent Developments in Slippery Liquid-Infused Porous Surface Coatings for Biomedical Applications. ACS Biomater Sci Eng 2024; 10:3655-3672. [PMID: 38743527 DOI: 10.1021/acsbiomaterials.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Slippery liquid-infused porous surface (SLIPS), inspired by the Nepenthes pitcher plant, exhibits excellent performances as it has a smooth surface and extremely low contact angle hysteresis. Biomimetic SLIPS attracts considerable attention from the researchers for different applications in self-cleaning, anti-icing, anticorrosion, antibacteria, antithrombotic, and other fields. Hence, SLIPS has shown promise for applications across both the biomedical and industrial fields. However, the manufacturing of SLIPS with strong bonding ability to different substrates and powerful liquid locking performance remains highly challenging. In this review, a comprehensive overview of research on SLIPS for medical applications is conducted, and the design parameters and common fabrication methods of such surfaces are summarized. The discussion extends to the mechanisms of interaction between microbes, cells, proteins, and the liquid layer, highlighting the typical antifouling applications of SLIPS. Furthermore, it identifies the potential of utilizing the controllable factors provided by SLIPS to develop innovative materials and devices aimed at enhancing human health.
Collapse
Affiliation(s)
- Yiran Jia
- Joint Diseases Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yinuo Yang
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xu Cai
- Joint Diseases Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P. R. China
| | - Hongyu Zhang
- Joint Diseases Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
2
|
Ghasemlou M, Oladzadabbasabadi N, Ivanova EP, Adhikari B, Barrow CJ. Engineered Sustainable Omniphobic Coatings to Control Liquid Spreading on Food-Contact Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15657-15686. [PMID: 38518221 DOI: 10.1021/acsami.4c01329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
The adhesion of sticky liquid foods to a contacting surface can cause many technical challenges. The food manufacturing sector is confronted with many critical issues that can be overcome with long-lasting and highly nonwettable coatings. Nanoengineered biomimetic surfaces with distinct wettability and tunable interfaces have elicited increasing interest for their potential use in addressing a broad variety of scientific and technological applications, such as antifogging, anti-icing, antifouling, antiadhesion, and anticorrosion. Although a large number of nature-inspired surfaces have emerged, food-safe nonwetted surfaces are still in their infancy, and numerous structural design aspects remain unexplored. This Review summarizes the latest scientific research regarding the key principles, fabrication methods, and applications of three important categories of nonwettable surfaces: superhydrophobic, liquid-infused slippery, and re-entrant structured surfaces. The Review is particularly focused on new insights into the antiwetting mechanisms of these nanopatterned structures and discovering efficient platform methodologies to guide their rational design when in contact with food materials. A detailed description of the current opportunities, challenges, and future scale-up possibilities of these nanoengineered surfaces in the food industry is also provided.
Collapse
Affiliation(s)
- Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | | | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Benu Adhikari
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
3
|
Yang HC, Yuan HY, Wu ZW, Xu ZK. Room-temperature endogenous lubricant-infused slippery surfaces by evaporation induced phase separation. Chem Commun (Camb) 2024; 60:2050-2053. [PMID: 38288479 DOI: 10.1039/d3cc05932d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
We present a novel approach to fabricate endogenous slippery lubricant-infused porous surfaces (eSLIPS) at room temperature using an evaporation-induced phase separation process. The ternary coating system, comprising ethylene-propylene copolymer, caprylyl methicone, and n-hexane, forms a porous structure in situ infiltrated with lubricant, resulting in surfaces with remarkable anti-fouling and anti-icing properties.
Collapse
Affiliation(s)
- Hao-Cheng Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310000, P. R. China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310000, P. R. China
| | - Hai-Yuan Yuan
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Zhen-Wei Wu
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310000, P. R. China
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310000, P. R. China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310000, P. R. China
| |
Collapse
|
4
|
Wang X, Bai H, Li Z, Cao M. Fluid manipulation via multifunctional lubricant infused slippery surfaces: principle, design and applications. SOFT MATTER 2023; 19:588-608. [PMID: 36633123 DOI: 10.1039/d2sm01547a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Water-repellent interfaces with high performance have emerged as an indispensable platform for developing advanced materials and devices. Inspired by the pitcher plant, slippery liquid-infused porous surfaces (SLIPSs) with reliable hydrophobicity have proven to possess great potential for various applications in droplet and bubble manipulation, droplet energy harvesting, condensation, fog collection, anti-icing, and anti-biofouling due to their excellent properties such as persistent surface hydrophobicity, molecular smoothness, and fluidity. This review aims to introduce the development history of interaction between SLIPSs and fluids as well as the design principles, preparation methods, and various applications of some of the more typical SLIPSs. The fluid manipulation strategies of the slippery surfaces have been proposed including the wettability pattern, oriented micro-structure, and geometric gradient. At last, the application prospects of SLIPSs in various fields and the challenges in the design and fabrication of slippery surfaces are analyzed. We envision that this review can provide an overview of the fluid manipulating processes on slippery surfaces for researchers in both academic and industrial fields.
Collapse
Affiliation(s)
- Xinsheng Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China.
| | - Haoyu Bai
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China.
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhe Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Moyuan Cao
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, P. R. China.
| |
Collapse
|
5
|
Yan Y, Wang J, Gao J, Ma Y. TiO2-based slippery liquid-infused porous surfaces with excellent ice-phobic performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Multi-Liquid Repellent, Fluorine-Free, Heat Stable SLIPS via Layer-by-Layer Assembly. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Design of Metal-Based Slippery Liquid-Infused Porous Surfaces (SLIPSs) with Effective Liquid Repellency Achieved with a Femtosecond Laser. MICROMACHINES 2022; 13:mi13081160. [PMID: 35893158 PMCID: PMC9332264 DOI: 10.3390/mi13081160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022]
Abstract
Slippery liquid-infused porous surfaces (SLIPSs) have become an effective method to provide materials with sliding performance and, thus, achieve liquid repellency, through the process of infusing lubricants into the microstructure of the surface. However, the construction of microstructures on high-strength metals is still a significant challenge. Herein, we used a femtosecond laser with a temporally shaped Bessel beam to process NiTi alloy, and created uniform porous structures with a microhole diameter of around 4 µm, in order to store and lock lubricant. In addition, as the lubricant is an important factor that can influence the sliding properties, five different lubricants were selected to prepare the SLIPSs, and were further compared in terms of their sliding behavior. The temperature cycle test and the hydraulic pressure test were implemented to characterize the durability of the samples, and different liquids were used to investigate the possible failure under complex fluid conditions. In general, the prepared SLIPSs exhibited superior liquid repellency. We believe that, in combination with a femtosecond laser, slippery liquid-infused porous surfaces are promising for applications in a wide range of areas.
Collapse
|
8
|
Shome A, Das A, Borbora A, Dhar M, Manna U. Role of chemistry in bio-inspired liquid wettability. Chem Soc Rev 2022; 51:5452-5497. [PMID: 35726911 DOI: 10.1039/d2cs00255h] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemistry and topography are the two distinct available tools for customizing different bio-inspired liquid wettability including superhydrophobicity, superamphiphobicity, underwater superoleophobicity, underwater superoleophilicity, and liquid infused slippery property. In nature, various living species possessing super and special liquid wettability inherently comprises of distinctly patterned surface topography decorated with low/high surface energy. Inspired from the topographically diverse natural species, the variation in surface topography has been the dominant approach for constructing bio-inspired antiwetting interfaces. However, recently, the modulation of chemistry has emerged as a facile route for the controlled tailoring of a wide range of bio-inspired liquid wettability. This review article aims to summarize the various reports published over the years that has elaborated the distinctive importance of both chemistry and topography in imparting and modulating various bio-inspired wettability. Moreover, this article outlines some obvious advantages of chemical modulation approach over topographical variation. For example, the strategic use of the chemical approach has allowed the facile, simultaneous, and independent tailoring of both liquid wettability and other relevant physical properties. We have also discussed the design of different antiwetting patterned and stimuli-responsive interfaces following the strategic and precise alteration of chemistry for various prospective applications.
Collapse
Affiliation(s)
- Arpita Shome
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India.
| | - Avijit Das
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India.
| | - Angana Borbora
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India.
| | - Manideepa Dhar
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India.
| | - Uttam Manna
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India. .,Centre for Nanotechnology, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India.,Jyoti and Bhupat Mehta School of Health Science and Technology, Indian Institute of Technology Guwahati, Kamrup, Assam-781039, India
| |
Collapse
|
9
|
Weak Polyelectrolytes as Nanoarchitectonic Design Tools for Functional Materials: A Review of Recent Achievements. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103263. [PMID: 35630741 PMCID: PMC9145934 DOI: 10.3390/molecules27103263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022]
Abstract
The ionization degree, charge density, and conformation of weak polyelectrolytes can be adjusted through adjusting the pH and ionic strength stimuli. Such polymers thus offer a range of reversible interactions, including electrostatic complexation, H-bonding, and hydrophobic interactions, which position weak polyelectrolytes as key nano-units for the design of dynamic systems with precise structures, compositions, and responses to stimuli. The purpose of this review article is to discuss recent examples of nanoarchitectonic systems and applications that use weak polyelectrolytes as smart components. Surface platforms (electrodeposited films, brushes), multilayers (coatings and capsules), processed polyelectrolyte complexes (gels and membranes), and pharmaceutical vectors from both synthetic or natural-type weak polyelectrolytes are discussed. Finally, the increasing significance of block copolymers with weak polyion blocks is discussed with respect to the design of nanovectors by micellization and film/membrane nanopatterning via phase separation.
Collapse
|
10
|
Yu Z, Yu S, Laijun L, Wenjing L, Chaojing L, Hong J, Fujun W, Lu W. Construction of ultrasmooth PTFE membrane for preventing bacterial adhesion and cholestasis. Colloids Surf B Biointerfaces 2022; 213:112332. [PMID: 35151991 DOI: 10.1016/j.colsurfb.2022.112332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 01/09/2023]
Abstract
Bacterial adhesion and bile sludge accumulation can increase the risk of complications such as stent restenosis after biliary stent implantation. Compared with active and passive antimicrobial surfaces, a significant advantage of slippery liquid-infused porous surfaces (SLIPSs) is their recoverable anti-adhesive properties. According to the mechanism of SLIPSs and the application environments of the biliary system, a polytetrafluoroethylene (PTFE) electrospun fibrous membrane-impregnated silicone-oil system was developed to construct an ultrasmooth surface. Experimental results indicated that a PTFE SLIPS with 350 cSt of silicone oil had an extremely small roll angle (< 5°) and a high slip rate (4.8 ± 0.1 mm/s) and maintained excellent sliding stability after 7 d of immersion in model bile system. Thus, it can inhibit the adhesion of proteins, Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, and bile sludge. Moreover, when human fibroblasts were cultured on the PTFE SLIPS, it exhibited good cytocompatibility. Therefore, the proposed ultrasmooth PTFE membranes provide a promising alternative for biliary system to prevent bacterial adhesion and bile sludge accumulation.
Collapse
Affiliation(s)
- Zhang Yu
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Sun Yu
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Liu Laijun
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Liu Wenjing
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Li Chaojing
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Jiang Hong
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.
| | - Wang Fujun
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China.
| | - Wang Lu
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| |
Collapse
|
11
|
Singh SL, Schimmele L, Dietrich S. Intrusion of liquids into liquid-infused surfaces with nanoscale roughness. Phys Rev E 2022; 105:044803. [PMID: 35590586 DOI: 10.1103/physreve.105.044803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
We present a theoretical study of the intrusion of an ambient liquid into the pores of a nanocorrugated wall w. The pores are prefilled with a liquid lubricant that adheres to the walls of the pores more strongly than the ambient liquid does. The two liquids are modeled as a binary liquid mixture of two species of particles, A and B. The mixture can decompose into a liquid rich in A particles, representing the ambient liquid, and another one rich in B particles, representing the liquid lubricant. The wall is taken to attract the B particles more strongly than the A particles. The ratio w-A/w-B of these interaction strengths is changed in order to tune the contact angle θ_{AB} formed by the A-rich/B-rich liquid interface between the two fluids and a planar wall, composed of the same material as the one forming the pores. We use classical density functional theory in order to capture the effects of microscopic details on the intrusion transition, which occurs as the concentration of the minority component or the pressure in the bulk of the ambient liquid is varied, moving away from bulk liquid-liquid coexistence within the single-phase domain of the A-rich bulk ambient liquid. These liquid structures have been studied as a function of the contact angle θ_{AB} and for various widths and depths of the pores. We also studied the reverse process in which a pore initially filled with the ambient liquid is refilled with the liquid lubricant. The location of the intrusion transition, with respect to its dependence on the contact angle θ_{AB} and the width of the pore, qualitatively follows the corresponding shift of the capillary-coexistence line away from the bulk liquid-liquid coexistence line, as predicted by a macroscopic capillarity model. Quantitatively, the transition found in the microscopic approach occurs somewhat closer to the bulk liquid-liquid coexistence line than predicted by the macroscopic capillarity model. The quantitative discrepancies become larger for narrower cavities. In cases in which the wall is completely wetted by the lubricant (θ_{AB}=0) and for small contact angles, the reverse transition follows the same path as for intrusion; there is no hysteresis. For larger contact angles, hysteresis is observed. The width of the hysteresis increases with increasing contact angle. A reverse transition is not found inside the domain within which the ambient liquid forms a single phase in the bulk once θ_{AB} exceeds a geometry-dependent threshold value. According to the macroscopic capillarity theory, for the considered geometry, this is the case for θ_{AB}>54.7^{∘}. Our computations show, however, that nanoscale effects shift this threshold value to much higher values. This shift increases strongly if the widths of the pores become smaller (below about ten times the diameter of the A and B particles).
Collapse
Affiliation(s)
- Swarn Lata Singh
- Max-Planck-Institut für Intelligente Systeme, D-70569 Stuttgart, Heisenbergstrasse 3, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
- Department of Physics, Mahila Mahavidyalaya (MMV), Banaras Hindu University, Varanasi, UP, 221005, India
| | - Lothar Schimmele
- Max-Planck-Institut für Intelligente Systeme, D-70569 Stuttgart, Heisenbergstrasse 3, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - S Dietrich
- Max-Planck-Institut für Intelligente Systeme, D-70569 Stuttgart, Heisenbergstrasse 3, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| |
Collapse
|
12
|
Dong W, Li B, Wei J, Liang W, Zhang J. Durable and transparent super anti-wetting coatings with excellent liquid repellency and anti-fouling performance based on fluorinated polysiloxane. NEW J CHEM 2022. [DOI: 10.1039/d2nj00880g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Super anti-fouling coatings are of great interest because of their good liquid repellency and anti-fouling performance. However, it is challenging to prepare durable and transparent super anti-fouling coatings, especially via...
Collapse
|
13
|
|
14
|
Sung C, Heo Y. Porous Layer-by-Layer Films Assembled Using Polyelectrolyte Blend to Control Wetting Properties. Polymers (Basel) 2021; 13:2116. [PMID: 34203206 PMCID: PMC8271915 DOI: 10.3390/polym13132116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
Porous layer-by-layer (LbL) films have been employed for the implementation of superwetting surfaces, but they are limited to the LbL films consisting of only two oppositely charged polyelectrolytes. In this study, LbL films were assembled using a cationic polymer blend of branched poly(ethylene imine) (BPEI) and poly(allylamine hydrochloride) (PAH), and anionic poly(acrylic acid); they were then acid-treated at pH 1.8-2.0 to create a porous structure. The films of 100% BPEI exhibited a relatively smooth surface, whereas those of the 100% PAH exhibited porous surfaces. However, various surface morphologies were obtained when BPEI and PAH were blended. When coated with fluorinated silane, films with 50% and 100% PAH exhibited relatively higher water contact angles (WCAs). In particular, films with 50% PAH exhibited the highest WCA of 140-150° when treated at pH 1.8. These fluorinated films were further infused with lubricant oil to determine their feasibility as slippery surfaces. The water and oil sliding angles were in the range of 10-20° and 5-10°, respectively. Films prepared with the BPEI/PAH blend showed lower water slide angles than those prepared with 100% BPEI or PAH. Acid treatment of LbL films assembled using a polyelectrolyte blend can effectively control surface morphologies and can potentially be applied in superwetting.
Collapse
Affiliation(s)
- Choonghyun Sung
- Division of Advanced Materials Engineering, Dong-Eui University, Busan 47340, Korea;
| | | |
Collapse
|
15
|
Lu JX, Wu SL, Liang ZH, Yang HC, Li W. Brushable Lubricant-Infused Porous Coating with Enhanced Stability by One-Step Phase Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23134-23141. [PMID: 33945255 DOI: 10.1021/acsami.1c02751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Slippery lubricant-infused porous surface (SLIPS) is a promising solution to undesired adhesion. Unfortunately, the complicated fabrication process and limited coating area block its practical applications. Herein, we report a one-step strategy to fabricate polypropylene-based SLIPS coatings through thermally induced phase separation, in which the lubricant is in situ infiltrated within a polymer network formed during cooling. The solid-liquid-phase separation process was monitored by an in situ hot-stage microscope. Such coating performs outstanding self-cleaning, anti-corrosion, and anti-bacterial performance, as well as enhanced stability of the lubricant layer because the lubricant is well adapted in the structure.
Collapse
Affiliation(s)
- Jia-Xing Lu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Shao-Lin Wu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Ze-Hui Liang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Hao-Cheng Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Weihua Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| |
Collapse
|
16
|
Dong W, Li B, Wei J, Tian N, Liang W, Zhang J. Environmentally friendly, durable and transparent anti-fouling coatings applicable onto various substrates. J Colloid Interface Sci 2021; 591:429-439. [PMID: 33631530 DOI: 10.1016/j.jcis.2021.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 01/12/2023]
Abstract
Anti-fouling coatings are of great interest because of their unique wettability and self-cleaning property, but their widespread applications are seriously hindered by low stability, heavy usage of fluorinated compounds and low transparency, etc. Here, we report a new kind of smooth anti-fouling coatings based on methyltrimethoxysilane. The coatings were fabricated by preparing a stock solution via hydrolytic condensation of methyltrimethoxysilane in isopropanol, followed by wiping the glass slide with the non-woven fabric that sucked the stock solution. The transparent anti-fouling coatings have excellent anti-fouling properties against various fluids such as water, n-hexadecane, diiodomethane, daily encountered liquids (e.g., milk, coffee, red wine, soy sauce and cooking oil), mark seals, artificial fingerprint liquids and paints (both water-based and oil-based), etc. The fluids can easily roll off from the 4-30° titled coatings. Furthermore, the coatings have good mechanical (200 cycles of friction, scratching and bending), chemical (saline, acidic and basic solutions) and thermal stability (boiling and 300 °C heating) regarding the easy sliding behavior of the probing liquids. In addition, the anti-fouling coatings are applicable onto various substrates via the same procedure. The smooth anti-fouling coatings have huge potential applications, owing to the excellent anti-fouling properties, high stability as well as the non-fluorinated and simple preparation method.
Collapse
Affiliation(s)
- Wenrui Dong
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Bucheng Li
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Jinfei Wei
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Ning Tian
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Weidong Liang
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China.
| | - Junping Zhang
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
17
|
Slippery Liquid-Infused Porous Polymeric Surfaces Based on Natural Oil with Antimicrobial Effect. Polymers (Basel) 2021; 13:polym13020206. [PMID: 33430082 PMCID: PMC7826890 DOI: 10.3390/polym13020206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 01/05/2021] [Indexed: 01/31/2023] Open
Abstract
Many polymer materials have found a wide variety of applications in biomedical industries due to their excellent mechanical properties. However, the infections associated with the biofilm formation represent serious problems resulting from the initial bacterial attachment on the polymeric surface. The development of novel slippery liquid-infused porous surfaces (SLIPSs) represents promising method for the biofilm formation prevention. These surfaces are characterized by specific microstructural roughness able to hold lubricants inside. The lubricants create a slippery layer for the repellence of various liquids, such as water and blood. In this study, effective antimicrobial modifications of polyethylene (PE) and polyurethane (PU), as commonly used medical polymers, were investigated. For this purpose, low-temperature plasma treatment was used initially for activation of the polymeric surface, thereby enhancing surface and adhesion properties. Subsequently, preparation of porous microstructures was achieved by electrospinning technique using polydimethylsiloxane (PDMS) in combination with polyamide (PA). Finally, natural black seed oil (BSO) infiltrated the produced fiber mats acting as a lubricating layer. The optimized fiber mats' production was achieved using PDMS/PA mixture at ratio 1:1:20 (g/g/mL) using isopropyl alcohol as solvent. The surface properties of produced slippery surfaces were analyzed by various microscopic and optics techniques to obtain information about wettability, sliding behavior and surface morphology/topography. The modified PE and PU substrates demonstrated slippery behavior of an impinged water droplet at a small tilting angle. Moreover, the antimicrobial effects of the produced SLIPs using black seed oil were proven against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli).
Collapse
|
18
|
Baumli P, D'Acunzi M, Hegner KI, Naga A, Wong WSY, Butt HJ, Vollmer D. The challenge of lubricant-replenishment on lubricant-impregnated surfaces. Adv Colloid Interface Sci 2021; 287:102329. [PMID: 33302056 DOI: 10.1016/j.cis.2020.102329] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 11/18/2022]
Abstract
Lubricant-impregnated surfaces are two-component surface coatings. One component, a fluid called the lubricant, is stabilized at a surface by the second component, the scaffold. The scaffold can either be a rough solid or a polymeric network. Drops immiscible with the lubricant, hardly pin on these surfaces. Lubricant-impregnated surfaces have been proposed as candidates for various applications, such as self-cleaning, anti-fouling, and anti-icing. The proposed applications rely on the presence of enough lubricant within the scaffold. Therefore, the quality and functionality of a surface coating are, to a large degree, given by the extent to which it prevents lubricant-depletion. This review summarizes the current findings on lubricant-depletion, lubricant-replenishment, and the resulting understanding of both processes. A multitude of different mechanisms can cause the depletion of lubricant. Lubricant can be taken along by single drops or be sheared off by liquid flowing across. Nano-interstices and scaffolds showing good chemical compatibility with the lubricant can greatly delay lubricant depletion. Often, depletion of lubricant cannot be avoided under dynamic conditions, which warrants lubricant-replenishment strategies. The strategies to replenish lubricant are presented and range from spraying or stimuli-responsive release to built-in reservoirs.
Collapse
Affiliation(s)
- Philipp Baumli
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Maria D'Acunzi
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina I Hegner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Abhinav Naga
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - William S Y Wong
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Doris Vollmer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
19
|
Xu W, Yi P, Gao J, Deng Y, Peng L, Lai X. Large-Area Stable Superhydrophobic Poly(dimethylsiloxane) Films Fabricated by Thermal Curing via a Chemically Etched Template. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3042-3050. [PMID: 31860263 DOI: 10.1021/acsami.9b19677] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inspired by nature, large-area stable superhydrophobic poly(dimethylsiloxane) (PDMS) films have generated extensive interest for various applications such as self-cleaning, corrosion protection, liquid transport, optical services, and flexible electronics. However, the current methods used to prepare such films are difficult to apply for efficient large-area fabrication. In this article, an effective technique for fabricating low adhesive superhydrophobic films based on the use of a chemically etched template followed by a thermal curing process is introduced. On the basis of this approach, the importance of chemical solution concentration as well as etching time is discussed to outline the specific rules required for forming different surface topographies of the templates. Then, PDMS films with varying wettabilities can be fabricated in which one can achieve CA > 160° and SA < 10°. Finally, for engineering needs and actual preparation, large-area PDMS films are obtained via a roll-to-roll (R2R) process, which show a superhydrophobic property even after high-intensity friction and have excellent acid and alkaline resistance, UV resistance, and optical transparency. The prepared large-area stable superhydrophobic PDMS films have the potential to be used in the aerospace field in the future because of their excellent anti-icing performance.
Collapse
Affiliation(s)
- Weitian Xu
- State Key Laboratory of Mechanical System and Vibration and Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Peiyun Yi
- State Key Laboratory of Mechanical System and Vibration and Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Jie Gao
- State Key Laboratory of Mechanical System and Vibration and Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Yujun Deng
- State Key Laboratory of Mechanical System and Vibration and Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Linfa Peng
- State Key Laboratory of Mechanical System and Vibration and Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Xinmin Lai
- State Key Laboratory of Mechanical System and Vibration and Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| |
Collapse
|
20
|
Li Q, Wu D, Guo Z. Drop/bubble transportation and controllable manipulation on patterned slippery lubricant infused surfaces with tunable wettability. SOFT MATTER 2019; 15:6803-6810. [PMID: 31410438 DOI: 10.1039/c9sm01167f] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Directional transportation and manipulation of liquid droplets, which are of great significance for science and technologies, are mainly dependent on special surface wettability. Inspired by the carnivorous nepenthes, we fabricate a paraffin infused hybrid porous hydroxyapatite nanowires/carbon nanofibers film (PIHPHCF). The inorganic hydroxyapatite nanowires (HAPNWs) firmly intertwine with the carbon nanofibers (CNTs) to form a three-dimensional porous network after the self-assembly process. On account of the CNTs' photothermal effect, the infused paraffin in PIHPHCF can transform from the solid state to a liquid state in response to near-infrared light irradiation (NIRLI, 808 nm), causing the wettability of the film to convert from hydrophobic to slippery. Through inducting variform mask layers, the slippery pathways melting from the lubricating paraffin are adjusted to different shapes such as 'S' and 'Y', where liquid droplets are able to be directionally transported. Additionally, potential application of the as-prepared patterned slippery film is explored as a microreactor and microfluidics device. Moreover, such a patterned slippery surface is successfully utilized to explore bubbles capture, manipulation and release under a warm-water environment. We anticipate that this work is poised to broaden the application of patterned slippery surfaces, as an example of which is liquid or bubble controllable transportation and manipulation.
Collapse
Affiliation(s)
- Qi Li
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, People's Republic of China
| | | | | |
Collapse
|
21
|
Pham QN, Zhang S, Montazeri K, Won Y. Droplets on Slippery Lubricant-Infused Porous Surfaces: A Macroscale to Nanoscale Perspective. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14439-14447. [PMID: 30372082 DOI: 10.1021/acs.langmuir.8b02765] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A recent design approach in creating super-repellent surfaces through slippery surface lubrication offers tremendous liquid-shedding capabilities. Previous investigations have provided significant insights into droplet-lubricant interfacial behaviors that govern antiwetting properties but have often studied using macroscale droplets. Despite drastically different governing characteristics of ultrasmall droplets on slippery lubricated surfaces, little is known about the effects at the micro- and nanoscale. In this investigation, we impregnate a three-dimensionally, well-ordered porous metal architecture with a lubricant to confirm durable slippery surfaces. We then reduce the droplet size to a nanoliter range and experimentally compare the droplet behaviors at different length scales. By experimentally varying the lubricant thickness levels, we also reveal that the effect of lubricant wetting around ultrasmall droplets is intensely magnified, which significantly affects the transient droplet dynamics. Molecular dynamics computations further examine the ultrasmall droplets with varying lubricant levels or pore cut levels at the nanoscale. The combined experimental and computational work provides insights into droplet interfacial phenomena on slippery surfaces from a macroscale to nanoscale perspective.
Collapse
|
22
|
Singh N, Kakiuchida H, Sato T, Hönes R, Yagihashi M, Urata C, Hozumi A. Omniphobic Metal Surfaces with Low Contact Angle Hysteresis and Tilt Angles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11405-11413. [PMID: 30207475 DOI: 10.1021/acs.langmuir.8b02430] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Various metal (Al, Ti, Fe, Ni, and Cu) surfaces with native oxide layers were rendered "omniphobic" by a simple thermal treatment of neat liquid trimethylsiloxy-terminated polymethylhydrosiloxanes (PMHSs) with a range of different molecular weights (MWs). Because of this treatment, the PMHS chains were covalently attached to the oxidized metal surfaces, giving 2-10 nm thick PMHS layers. The resulting surfaces were fairly smooth, liquid-like, and showed excellent dynamic omniphobicity with both low contact angle hysteresis (≲5°) and substrate tilt angles (≲8°) toward small-volume liquid drops (5 μL) with surface tensions ranging from 20.5 to 72.8 mN/m. Droplet mobility was improved overall as a result of heating the substrates to 70 °C. The reaction kinetics and final dynamic dewetting properties were found to be not dependent of the types of metals employed or MWs of PMHS, but mainly dominated by both reaction temperatures and reaction times.
Collapse
Affiliation(s)
- Narendra Singh
- National Institute of Advanced Industrial Science and Technology (AIST) , 2266-98, Anagahora, Shimoshidami , Moriyama-ku, Nagoya 463-8560 , Japan
| | - Hiroshi Kakiuchida
- National Institute of Advanced Industrial Science and Technology (AIST) , 2266-98, Anagahora, Shimoshidami , Moriyama-ku, Nagoya 463-8560 , Japan
| | - Tomoya Sato
- National Institute of Advanced Industrial Science and Technology (AIST) , 2266-98, Anagahora, Shimoshidami , Moriyama-ku, Nagoya 463-8560 , Japan
| | - Roland Hönes
- National Institute of Advanced Industrial Science and Technology (AIST) , 2266-98, Anagahora, Shimoshidami , Moriyama-ku, Nagoya 463-8560 , Japan
| | - Makoto Yagihashi
- Nagoya Municipal Industrial Research Institute , 3-4-41, Rokuban , Atsuta-ku, Nagoya 456-0058 , Japan
| | - Chihiro Urata
- National Institute of Advanced Industrial Science and Technology (AIST) , 2266-98, Anagahora, Shimoshidami , Moriyama-ku, Nagoya 463-8560 , Japan
| | - Atsushi Hozumi
- National Institute of Advanced Industrial Science and Technology (AIST) , 2266-98, Anagahora, Shimoshidami , Moriyama-ku, Nagoya 463-8560 , Japan
| |
Collapse
|