1
|
Kotak D, Kamath P, Ghosh UU. Polymer Imbibition Through Paper Strips. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5306-5313. [PMID: 38422487 DOI: 10.1021/acs.langmuir.3c03751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Liquid wicking and imbibition through porous strips are fundamental to paper microfluidics. In this study, we outline these processes via capillary rise dynamics (CRD) experiments by employing deionized water as a reference fluid and comparing its dynamics with those of aqueous polymer solutions. Replacing the working fluid with polymer solutions led to the occurrence of an intermediate viscous-dominated regime, followed by the gravity-dominated regime at a long-time scale. This transition from viscous-dominated to gravity-dominated was found to be a function of the porous substrate pore diameter. The delay in CRD from the viscous-dominated to gravity-dominated regime is explained by the presence of the prewetting front (PWF). To address it, PWF dynamics has also been quantified, along with the characterization of its morphological differences.
Collapse
Affiliation(s)
- Deep Kotak
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Prajwal Kamath
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Udita U Ghosh
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
2
|
Liu Y, Jiang J, Pu Y, Francisco JS, Zeng XC. Evidence of Formation of 1-10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries. ACS NANO 2023; 17:6922-6931. [PMID: 36940168 DOI: 10.1021/acsnano.3c00720] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Water exhibits rich phase behaviors in nanoscale confinement. Since the simulation evidence of the formation of single-walled ice nanotubes (INTs) in single-walled carbon nanotubes was confirmed experimentally, INTs have been recognized as a form of low-dimensional hydrogen-bonding network. However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). Three distinct classes of INTs are observed, namely, INTs with flat square walls (INTs-FSW), INTs with puckered rhombic walls (INTs-PRW), and INTs with bilayer hexagonal walls (INTs-BHW). Surprisingly, when water is confined in DW-CNT (3, 3)@(13, 13), an INT-FSW freezing temperature of 380 K can be reached, which is even higher than the boiling temperature of bulk water at atmospheric pressure. The freezing temperatures of INTs-FSW decrease as their caliber increases, approaching to the freezing temperature of two-dimensional flat square ice at the large-diameter limit. In contrast, the freezing temperature of INTs-PRW is insensitive to their diameter. Ab initio molecular dynamics simulations are performed to examine the stability of the INT-FSW and INT-PRW. The highly stable INTs with diameters beyond subnanometer scale can be exploited for potential applications in nanofluidic technologies and for mass transport as bioinspired nanochannels.
Collapse
Affiliation(s)
- Yuan Liu
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
| | - Jian Jiang
- Department of Materials Science & Engineering, City University of Hong Kong, Kowloon, Hong Kong
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Yangyang Pu
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
| | - Joseph S Francisco
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xiao Cheng Zeng
- Department of Materials Science & Engineering, City University of Hong Kong, Kowloon, Hong Kong
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
3
|
Feng D, Chen Z, Wu K, Li J, Dong X, Peng Y, Jia X, Li X, Wang D. A comprehensive review on the flow behaviour in shale gas reservoirs: Multi‐scale, multi‐phase, and multi‐physics. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dong Feng
- State Key Laboratory of Petroleum Resources and Prospecting China University of Petroleum (Beijing) Beijing P. R. China
| | - Zhangxin Chen
- State Key Laboratory of Petroleum Resources and Prospecting China University of Petroleum (Beijing) Beijing P. R. China
- Department of Chemical and Petroleum Engineering University of Calgary Calgary Canada
| | - Keliu Wu
- State Key Laboratory of Petroleum Resources and Prospecting China University of Petroleum (Beijing) Beijing P. R. China
| | - Jing Li
- State Key Laboratory of Petroleum Resources and Prospecting China University of Petroleum (Beijing) Beijing P. R. China
| | - Xiaohu Dong
- State Key Laboratory of Petroleum Resources and Prospecting China University of Petroleum (Beijing) Beijing P. R. China
| | - Yan Peng
- State Key Laboratory of Petroleum Resources and Prospecting China University of Petroleum (Beijing) Beijing P. R. China
| | - Xinfeng Jia
- State Key Laboratory of Petroleum Resources and Prospecting China University of Petroleum (Beijing) Beijing P. R. China
| | - Xiangfang Li
- State Key Laboratory of Petroleum Resources and Prospecting China University of Petroleum (Beijing) Beijing P. R. China
| | - Dinghan Wang
- State Key Laboratory of Petroleum Resources and Prospecting China University of Petroleum (Beijing) Beijing P. R. China
| |
Collapse
|
4
|
Sun Z, Huang B, Yan S, Wang S, Wu K, Yu W, Li Y, Wang S. Nanoconfined Methane Thermodynamic Behavior below Critical Temperature: Liquid–Vapor Coexistence Curve under Wettability Effect. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00079] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zheng Sun
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China
- Department of Petroleum Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Bingxiang Huang
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China
| | - Shuhui Yan
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China
| | - Shuolong Wang
- SINOPEC Research Institute of Petroleum Engineering, Beijing 102206, China
| | - Keliu Wu
- State Key Laboratory of Petroleum Resources and Prospecting in China University of Petroleum (Beijing), Beijing 102249, China
| | - Weichao Yu
- China Petroleum Planning & Engineering Institute, Beijing 100083, China
| | - Yaohui Li
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China
| | - Suran Wang
- CNOOC Research Institute Co., Ltd., Beijing 100028, China
| |
Collapse
|
5
|
Wu S, Li Z, Zhang C, Lv G, Zhou P. Nanohydrodynamic Model and Transport Mechanisms of Tight Oil Confined in Nanopores Considering Liquid–Solid Molecular Interaction Effect. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shouya Wu
- Key Laboratory of In-situ Property-improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Zhaomin Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Chao Zhang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Guangzhong Lv
- Geoscience Institute, SINOPEC Shengli Oilfield Company, Dongying 257061, China
| | - Peng Zhou
- China National Oil and Gas Exploration and Development Ltd. Corporation, Beijing 10034, China
| |
Collapse
|
6
|
Wang H, Su Y, Wang W. Investigations on Water Imbibing into Oil-Saturated Nanoporous Media: Coupling Molecular Interactions, the Dynamic Contact Angle, and the Entrance Effect. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Han Wang
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, P. R. China
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Yuliang Su
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, P. R. China
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Wendong Wang
- Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, P. R. China
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
7
|
Lei Z, Lai L, Sun Z, Wu K. Comprehensive Model for Oil Transport Behavior in Nanopores: Interactions between Oil and Pore Surface. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhengdong Lei
- Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
| | - Lingbin Lai
- Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
| | - Zheng Sun
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China
| | - Keliu Wu
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, P. R. China
| |
Collapse
|
8
|
Zhang L, Wu K, Chen Z, Li J, Yu X, Yang S, Hui G, Yang M. Quasi-Continuum Water Flow under Nanoconfined Conditions: Coupling the Effective Viscosity and the Slip Length. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Linyang Zhang
- Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Keliu Wu
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
| | - Zhangxin Chen
- Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N1N4, Canada
- Key Laboratory for Petroleum Engineering of the Ministry of Education, China University of Petroleum (Beijing), Beijing 102249, China
| | - Jing Li
- Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N1N4, Canada
- Key Laboratory for Petroleum Engineering of the Ministry of Education, China University of Petroleum (Beijing), Beijing 102249, China
| | - Xinran Yu
- Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Sheng Yang
- Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Gang Hui
- Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Min Yang
- Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N1N4, Canada
| |
Collapse
|
9
|
Zhang T, Javadpour F, Li X, Wu K, Li J, Yin Y. Mesoscopic method to study water flow in nanochannels with different wettability. Phys Rev E 2020; 102:013306. [PMID: 32794987 DOI: 10.1103/physreve.102.013306] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022]
Abstract
Molecular dynamics (MD) simulations is currently the most popular and credible tool to model water flow in nanoscale where the conventional continuum equations break down due to the dominance of fluid-surface interactions. However, current MD simulations are computationally challenging for the water flow in complex tube geometries or a network of nanopores, e.g., membrane, shale matrix, and aquaporins. We present a novel mesoscopic lattice Boltzmann method (LBM) for capturing fluctuated density distribution and a nonparabolic velocity profile of water flow through nanochannels. We incorporated molecular interactions between water and the solid inner wall into LBM formulations. Details of the molecular interactions were translated into true and apparent slippage, which were both correlated to the surface wettability, e.g., contact angle. Our proposed LBM was tested against 47 published cases of water flow through infinite-length nanochannels made of different materials and dimensions-flow rates as high as seven orders of magnitude when compared with predictions of the classical no-slip Hagen-Poiseuille (HP) flow. Using the developed LBM model, we also studied water flow through finite-length nanochannels with tube entrance and exit effects. Results were found to be in good agreement with 44 published finite-length cases in the literature. The proposed LBM model is nearly as accurate as MD simulations for a nanochannel, while being computationally efficient enough to allow implications for much larger and more complex geometrical nanostructures.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory for Petroleum Engineering of the Ministry of Education, China University of Petroleum, Beijing 102249, China.,Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, University Station, Box X, Austin, Texas 78713, USA
| | - Farzam Javadpour
- Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, University Station, Box X, Austin, Texas 78713, USA
| | - Xiangfang Li
- Key Laboratory for Petroleum Engineering of the Ministry of Education, China University of Petroleum, Beijing 102249, China
| | - Keliu Wu
- Key Laboratory for Petroleum Engineering of the Ministry of Education, China University of Petroleum, Beijing 102249, China.,The Department of Chemical and Petroleum Engineering, University of Calgary, Alberta, Canada T2N1N4
| | - Jing Li
- The Department of Chemical and Petroleum Engineering, University of Calgary, Alberta, Canada T2N1N4
| | - Ying Yin
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
10
|
|
11
|
Sun Z, Wu K, Shi J, Zhang T, Feng D, Wang S, Liu W, Mao S, Li X. Effect of pore geometry on nanoconfined water transport behavior. AIChE J 2019. [DOI: 10.1002/aic.16613] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zheng Sun
- State Key Laboratory of Petroleum Resources and ProspectingChina University of Petroleum (Beijing) Beijing People's Republic of China
- Department of Petroleum EngineeringTexas A&M University College Station Texas
| | - Keliu Wu
- State Key Laboratory of Petroleum Resources and ProspectingChina University of Petroleum (Beijing) Beijing People's Republic of China
| | - Juntai Shi
- State Key Laboratory of Petroleum Resources and ProspectingChina University of Petroleum (Beijing) Beijing People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Petroleum Resources and ProspectingChina University of Petroleum (Beijing) Beijing People's Republic of China
| | - Dong Feng
- State Key Laboratory of Petroleum Resources and ProspectingChina University of Petroleum (Beijing) Beijing People's Republic of China
| | - Suran Wang
- State Key Laboratory of Petroleum Resources and ProspectingChina University of Petroleum (Beijing) Beijing People's Republic of China
| | - Wenyuan Liu
- State Key Laboratory of Petroleum Resources and ProspectingChina University of Petroleum (Beijing) Beijing People's Republic of China
| | - Shaowen Mao
- Department of Petroleum EngineeringTexas A&M University College Station Texas
| | - Xiangfang Li
- State Key Laboratory of Petroleum Resources and ProspectingChina University of Petroleum (Beijing) Beijing People's Republic of China
| |
Collapse
|