1
|
Inverse ISAsomes in Bio-Compatible Oils—Exploring Formulations in Squalane, Triolein and Olive Oil. NANOMATERIALS 2022; 12:nano12071133. [PMID: 35407249 PMCID: PMC9000821 DOI: 10.3390/nano12071133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022]
Abstract
In contrast to their more common counterparts in aqueous solutions, inverse ISAsomes (internally self-assembled somes/particles) are formulated as kinetically stabilised dispersions of hydrophilic, lyotropic liquid-crystalline (LC) phases in non-polar oils. This contribution reports on their formation in bio-compatible oils. We found that it is possible to create inverse hexosomes, inverse micellar cubosomes (Fd3m) and an inverse emulsified microemulsion (EME) in excess squalane with a polyethylene glycol alkyl ether as the primary surfactant forming the LC phase and to stabilise them with hydrophobised silica nanoparticles. Furthermore, an emulsified -phase and inverse hexosomes were formed in excess triolein with the triblock-copolymer Pluronic® P94 as the primary surfactant. Stabilisation was achieved with a molecular stabiliser of type polyethylene glycol (PEG)-dipolyhydroxystearate. For the inverse hexosomes in triolein, the possibility of a formulation without any additional stabiliser was explored. It was found that a sufficiently strong stabilisation effect was created by the primary surfactant alone. Finally, triolein was replaced with olive oil which also led to the successful formation of inverse hexosomes. As far as we know, there exists no previous contribution about inverse ISAsomes in complex oils such as triolein or plant oils, and the existence of stabiliser-free (i.e., self-stabilising) inverse hexosomes has also not been reported until now.
Collapse
|
2
|
Inverting structures: from micelles via emulsions to internally self-assembled water and oil continuous nanocarriers. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
Liu D, Angelova A, Liu J, Garamus VM, Angelov B, Zhang X, Li Y, Feger G, Li N, Zou A. Self-assembly of mitochondria-specific peptide amphiphiles amplifying lung cancer cell death through targeting the VDAC1-hexokinase-II complex. J Mater Chem B 2020; 7:4706-4716. [PMID: 31364685 DOI: 10.1039/c9tb00629j] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mitochondria-targeting peptides represent an emergent tool for cancer inhibition. Here supramolecular assemblies of novel amphiphilic cell-penetrating peptides for targeting cancer cell mitochondria are reported. The employed strategy aims at amplifying the apoptotic stimuli by weakening the mitochondrial VDAC1 (voltage-dependent anion channel-1)-hexokinase-II (HK-II) interaction. Peptide engineering is performed with the N-terminus of the HK-II protein, which binds to VDAC1. First, a designed positively charged segment (pKV) is anchored to the specific 15 amino acid sequence (MIASHLLAYFFTELN) to yield a cell-penetrating peptide (pHK-pKV). Second, a lipid chain (Pal) is conjugated to the N-terminus of pHK-pKV in order to enhance the intracellular delivery of the HK-II scaffold. The self-assembly properties of these two synthetic peptides are investigated by synchrotron small-angle X-ray scattering (BioSAXS) and cryogenic transmission electron (cryo-TEM) imaging, which evidence the formation of nanoassemblies of ellipsoid-like shapes. Circular dichroism (CD) spectroscopy demonstrates the induction of partial α-helical structures in the amphiphilic peptides. Confocal microscopy reveals the specific mitochondrial location of Pal-pHK-pKV assemblies in human non-small cell lung cancer (NSCLC) A549 cells. The cytotoxicity and apoptotic studies indicate the enhanced bioactivity of Pal-pHK-pKV self-assembled reservoirs, which cause massive A549 cell death with regard to pHK-pKV. Of significance, Pal-pHK-pKV treatment of non-cancerous NCM460 cells resulted in substantially lower cytotoxicity. The results demonstrate the potential of self-assembled lipo-peptide (HK-II-derived) conjugates as a promising strategy in cancer therapy.
Collapse
Affiliation(s)
- Dan Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Angelina Angelova
- Institut Galien Paris-Sud, CNRS UMR 8612, LabEx LERMIT, Univ. Paris-Sud, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Vasil M Garamus
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, D-21502 Geesthacht, Germany
| | - Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic
| | - Xinlei Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Yawen Li
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Guillaume Feger
- Institut Galien Paris-Sud, CNRS UMR 8612, LabEx LERMIT, Univ. Paris-Sud, Université Paris-Saclay, F-92296 Châtenay-Malabry, France
| | - Na Li
- National Center for Protein Science Shanghai and Shanghai Institute of Biochemistry and Cell Biology, Shanghai 200120, P. R. China.
| | - Aihua Zou
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
4
|
Yu X, Jin Y, Du L, Sun M, Wang J, Li Q, Zhang X, Gao Z, Ding P. Transdermal Cubic Phases of Metformin Hydrochloride: In Silico and in Vitro Studies of Delivery Mechanisms. Mol Pharm 2018; 15:3121-3132. [DOI: 10.1021/acs.molpharmaceut.8b00209] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiang Yu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Yiguang Jin
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jian Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qiu Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida Padre Tomas Pereira, Taipa, Macao SAR, China
| | - Xiangyu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Zisen Gao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | | |
Collapse
|