1
|
Allen BP, Pinky SK, Beard EE, Gringeri AA, Calzadilla N, Sanders MA, Yingling YG, Knight AS. Monomer Composition as a Mechanism to Control the Self-Assembly of Diblock Oligomeric Peptide-Polymer Amphiphiles. ACS NANO 2024; 18:26839-26847. [PMID: 39287594 DOI: 10.1021/acsnano.4c08028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Diblock oligomeric peptide-polymer amphiphiles (PPAs) are biohybrid materials that offer versatile functionality by integrating the sequence-dependent properties of peptides with the synthetic versatility of polymers. Despite their potential as biocompatible materials, the rational design of PPAs for assembly into multichain nanoparticles remains challenging due to the complex intra- and intermolecular interactions emanating from the polymer and peptide segments. To systematically explore the impact of monomer composition on nanoparticle assembly, PPAs were synthesized with a random coil peptide (XTEN2) and oligomeric alkyl acrylates with different side chains: ethyl, tert-butyl, n-butyl, and cyclohexyl. Experimental characterization using electron and atomic force microscopies demonstrated that the tail hydrophobicity impacted accessible morphologies. Moreover, the characterization of different assembly protocols (i.e., bath sonication and thermal annealing) revealed that certain tail compositions provide access to kinetically trapped assemblies. All-atom molecular dynamics simulations of micelle formation unveiled key interactions and differences in core hydration, dictating the PPA assembly behavior. These findings highlight the complexity of PPA assembly dynamics and serve as valuable benchmarks to guide the design of PPAs for a variety of applications, including catalysis, mineralization, targeted sequestration, antimicrobial activity, and cargo transportation.
Collapse
Affiliation(s)
- Benjamin P Allen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sabila K Pinky
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Emily E Beard
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail A Gringeri
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nicholas Calzadilla
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew A Sanders
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yaroslava G Yingling
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Abigail S Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Kihal N, Côté-Cyr M, Nazemi A, Bourgault S. Semiconductive and Biocompatible Nanofibrils from the Self-Assembly of Amyloid π-Conjugated Peptides. Biomacromolecules 2023; 24:1417-1431. [PMID: 36847776 DOI: 10.1021/acs.biomac.2c01438] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Owing to their capacity to self-assemble into organized nanostructures, amyloid polypeptides can serve as scaffolds for the design of biocompatible semiconductive materials. Herein, symmetric and asymmetric amyloid π-conjugated peptides were prepared through condensation of perylene diimide (PDI) with a natural amyloidogenic sequence derived from the islet amyloid polypeptide. These PDI-bioconjugates assembled into long and linear nanofilaments in aqueous solution, which were characterized by a cross-β-sheet quaternary organization. Current-voltage curves exhibited a clear signature of semiconductors, whereas the cellular assays revealed cytocompatibility and potential application in fluorescence microscopy. Although the incorporation of a single amyloid peptide appeared sufficient to drive the self-assembly into organized fibrils, the incorporation of two peptide sequences at the PDI's imide positions significantly enhanced the conductivity of nanofibril-based films. Overall, this study exposes a novel strategy based on amyloidogenic peptide to guide the self-assembly of π-conjugated systems into robust, biocompatible, and optoelectronic nanofilaments.
Collapse
Affiliation(s)
- Nadjib Kihal
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec G1V 0A6, Canada
- Quebec Centre for Advanced Materials, QCAM, Montreal H1A 0A1, Canada
| | - Mélanie Côté-Cyr
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec G1V 0A6, Canada
| | - Ali Nazemi
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Quebec Centre for Advanced Materials, QCAM, Montreal H1A 0A1, Canada
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec G1V 0A6, Canada
| |
Collapse
|
3
|
Short Peptide-Based Smart Thixotropic Hydrogels †. Gels 2022; 8:gels8090569. [PMID: 36135280 PMCID: PMC9498505 DOI: 10.3390/gels8090569] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/22/2022] Open
Abstract
Thixotropy is a fascinating feature present in many gel systems that has garnered a lot of attention in the medical field in recent decades. When shear stress is applied, the gel transforms into sol and immediately returns to its original state when resting. The thixotropic nature of the hydrogel has inspired scientists to entrap and release enzymes, therapeutics, and other substances inside the human body, where the gel acts as a drug reservoir and can sustainably release therapeutics. Furthermore, thixotropic hydrogels have been widely used in various therapeutic applications, including drug delivery, cornea regeneration and osteogenesis, to name a few. Because of their inherent biocompatibility and structural diversity, peptides are at the forefront of cutting-edge research in this context. This review will discuss the rational design and self-assembly of peptide-based thixotropic hydrogels with some representative examples, followed by their biomedical applications.
Collapse
|
4
|
Pramanik B, Ahmed S. Peptide-Based Low Molecular Weight Photosensitive Supramolecular Gelators. Gels 2022; 8:533. [PMID: 36135245 PMCID: PMC9498526 DOI: 10.3390/gels8090533] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
Over the last couple of decades, stimuli-responsive supramolecular gels comprising synthetic short peptides as building blocks have been explored for various biological and material applications. Though a wide range of stimuli has been tested depending on the structure of the peptides, light as a stimulus has attracted extensive attention due to its non-invasive, non-contaminant, and remotely controllable nature, precise spatial and temporal resolution, and wavelength tunability. The integration of molecular photo-switch and low-molecular-weight synthetic peptides may thus provide access to supramolecular self-assembled systems, notably supramolecular gels, which may be used to create dynamic, light-responsive "smart" materials with a variety of structures and functions. This short review summarizes the recent advancement in the area of light-sensitive peptide gelation. At first, a glimpse of commonly used molecular photo-switches is given, followed by a detailed description of their incorporation into peptide sequences to design light-responsive peptide gels and the mechanism of their action. Finally, the challenges and future perspectives for developing next-generation photo-responsive gels and materials are outlined.
Collapse
Affiliation(s)
- Bapan Pramanik
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Sahnawaz Ahmed
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Kolkata, Kolkata 700054, India
| |
Collapse
|
5
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
6
|
Kihal N, Nazemi A, Bourgault S. Supramolecular Nanostructures Based on Perylene Diimide Bioconjugates: From Self-Assembly to Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1223. [PMID: 35407341 PMCID: PMC9000806 DOI: 10.3390/nano12071223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 12/18/2022]
Abstract
Self-assembling π-conjugated systems constitute efficient building blocks for the construction of supramolecular structures with tailored functional properties. In this context, perylene diimide (PDI) has attracted attention owing to its chemical robustness, thermal and photo-stability, and outstanding optical and electronic properties. Recently, the conjugation of PDI derivatives to biological molecules, including oligonucleotides and peptides, has opened new avenues for the design of nanoassemblies with unique structures and functionalities. In the present review, we offer a comprehensive summary of supramolecular bio-assemblies based on PDI. After briefly presenting the physicochemical, structural, and optical properties of PDI derivatives, we discuss the synthesis, self-assembly, and applications of PDI bioconjugates.
Collapse
Affiliation(s)
- Nadjib Kihal
- Department of Chemistry, Université du Québec, Montreal, QC H2X 2J6, Canada;
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec City, QC G1V 0A6, Canada
- Centre Québécois sur les Matériaux Fonctionnels/Québec Centre for Advanced Materials, CQMF/QCAM, Montreal, QC H3A 2A7, Canada
| | - Ali Nazemi
- Department of Chemistry, Université du Québec, Montreal, QC H2X 2J6, Canada;
- Centre Québécois sur les Matériaux Fonctionnels/Québec Centre for Advanced Materials, CQMF/QCAM, Montreal, QC H3A 2A7, Canada
| | - Steve Bourgault
- Department of Chemistry, Université du Québec, Montreal, QC H2X 2J6, Canada;
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
7
|
Das S, Das D. Rational Design of Peptide-based Smart Hydrogels for Therapeutic Applications. Front Chem 2021; 9:770102. [PMID: 34869218 PMCID: PMC8635208 DOI: 10.3389/fchem.2021.770102] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Peptide-based hydrogels have captivated remarkable attention in recent times and serve as an excellent platform for biomedical applications owing to the impressive amalgamation of unique properties such as biocompatibility, biodegradability, easily tunable hydrophilicity/hydrophobicity, modular incorporation of stimuli sensitivity and other functionalities, adjustable mechanical stiffness/rigidity and close mimicry to biological molecules. Putting all these on the same plate offers smart soft materials that can be used for tissue engineering, drug delivery, 3D bioprinting, wound healing to name a few. A plethora of work has been accomplished and a significant progress has been realized using these peptide-based platforms. However, designing hydrogelators with the desired functionalities and their self-assembled nanostructures is still highly serendipitous in nature and thus a roadmap providing guidelines toward designing and preparing these soft-materials and applying them for a desired goal is a pressing need of the hour. This review aims to provide a concise outline for that purpose and the design principles of peptide-based hydrogels along with their potential for biomedical applications are discussed with the help of selected recent reports.
Collapse
Affiliation(s)
- Saurav Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
8
|
Ghosh G, Kartha KK, Fernández G. Tuning the mechanistic pathways of peptide self-assembly by aromatic interactions. Chem Commun (Camb) 2021; 57:1603-1606. [PMID: 33463645 DOI: 10.1039/d0cc07199d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, we have unravelled the key influence of aromatic interactions on the mechanistic pathways of peptide self-assembly by introducing suitable chromophores (pyrene vs. naphthalene). Although both self-assembled peptides are indistinguishable in their morphologies, this minor structural difference strongly affects the packing modes (parallel vs. antiparallel) and the corresponding self-assembly mechanism (cooperative vs. isodemsic).
Collapse
Affiliation(s)
- Goutam Ghosh
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstraße 36, 48149 Münster, Germany.
| | | | | |
Collapse
|
9
|
Pramanik B, Das S, Das D. Aggregation-directed High Fidelity Sensing of Picric Acid by a Perylenediimide-based Luminogen. Chem Asian J 2020; 15:4291-4296. [PMID: 33137228 DOI: 10.1002/asia.202001184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Indexed: 11/09/2022]
Abstract
Widespread use of picric acid (PA) in chemical industries and deadly explosives poses dreadful impact on all living creatures as well as the natural environment and has raised global concerns that necessitate the development of fast and efficient sensing platforms. To address this issue, herein, we report a perylenediimide-peptide conjugate, PDI-1, for detection of PA in methanol. The probe displays typical aggregation caused quenching (ACQ) behaviour and exhibits a fluorescence "turn-off" sensory response towards PA which is unaffected by the presence of other interfering nitroaromatic compounds. The sensing mechanism involves PA induced aggregation of the probe into higher order tape like structures which leads to quenching of emission. The probe possesses a low detection limit of 5.6 nM or 1.28 ppb and a significantly high Stern-Volmer constant of 6.87×104 M-1 . It also exhibits conducting properties in the presence of PA vapours and thus represents a prospective candidate for vapour phase detection of PA. This is, to the best of our knowledge, the first example of a perylenediimide based probe that demonstrates extremely specific, selective and sensitive detection of PA and thus grasps the potential for application in practical scenarios.
Collapse
Affiliation(s)
- Bapan Pramanik
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Kamrup, Assam, 781039, India.,Present address: Department of Chemistry, Ben-Gurion University of Negev, Beer Sheva, 84105, Israel
| | - Saurav Das
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Kamrup, Assam, 781039, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Kamrup, Assam, 781039, India
| |
Collapse
|
10
|
Khazi MI, Balachandra C, Shin G, Jang GH, Govindaraju T, Kim JM. Co-solvent polarity tuned thermochromic nanotubes of cyclic dipeptide-polydiacetylene supramolecular system. RSC Adv 2020; 10:35389-35396. [PMID: 35515666 PMCID: PMC9056892 DOI: 10.1039/d0ra05656a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/28/2020] [Indexed: 11/21/2022] Open
Abstract
The cooperative non-covalent interactions arising from structurally integrated multiple molecules have emerged as a powerful tool for the creation of functional supramolecular structures. Herein, we constructed cyclic dipeptide (CDP)–polydiacetylene (PDA) conjugate (CDP–DA) by introducing cyclo(l-Phe-l-Lys) to the linear 10,12-pentacosadiynoic acid. Owing to extensive hydrogen bonding characteristics, together with structural chirality of cyclo(l-Phe-l-Lys) and strong π–π stacking diacetylenic template, CDP–DA generated supramolecular nanotubes. The structural visualization using scanning and transmission electron microscopy revealed chloroform/methanol co-solvent polarity tuned morphological transformation of intrinsic lamellar assemblies into nanotubes comprising single-wall and multi-wall structure. The mechanistic understanding by X-ray diffraction patterns confirms bilayer organization in lamellar structure, which forms nanotubes via a gradual lamellar curling-to-scrolling process. The supramolecular CDP–DA nanotubes are transformed into the rigid covalently cross-linked blue-phase polydiacetylene (CDP–PDA) by UV irradiation. Very interestingly, the blue-phase nanotubes display reversible thermochromic changing temperature up to 150 °C with excellent repeatability over a dozen thermal cycles. This work provides an efficient strategy for precise morphological control and aiding the perspective for development in nanostructures for functional devices. Co-solvent controlled fabrication of thermo-responsive chromogenic nanotubes of a cyclic dipeptide–polydiacetylene supramolecular system.![]()
Collapse
Affiliation(s)
| | - Chenikkayala Balachandra
- Bioorganic Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| | - Geon Shin
- Department of Chemical Engineering, Hanyang University Seoul 04763 Korea
| | - Gang-Hee Jang
- Department of Chemical Engineering, Hanyang University Seoul 04763 Korea
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| | - Jong-Man Kim
- Institute of Nano Science and Technology, Hanyang University Seoul 04763 Korea .,Department of Chemical Engineering, Hanyang University Seoul 04763 Korea
| |
Collapse
|
11
|
Dasgupta A, Das D. Designer Peptide Amphiphiles: Self-Assembly to Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10704-10724. [PMID: 31330107 DOI: 10.1021/acs.langmuir.9b01837] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Peptide amphiphiles (PAs) are extremely attractive as molecular building blocks, especially in the bottom-up fabrication of supramolecular soft materials, and have potential in many important applications across various fields of science and technology. In recent years, we have designed and synthesized a large group of peptide amphiphiles. This library of PAs has the ability to self-assemble into a variety of aggregates such as fibers, nanosphere, vesicles, nanosheet, nanocups, nanorings, hydrogels, and so on. The mechanism behind the formation of such a wide range of structures is intriguing. Each system has its individual method of aggregation and results in assemblies with important applications in areas including chemistry, biology, and materials science. The aim of this feature article is to bring together our recent achievements with designer PAs with respect to their self-assembly processes and applications. Emphasis is placed on rational design, mechanistic aspects of the self-assembly processes, and the applications of these PAs. We hope that this article will provide a conceptual demonstration of the different approaches taken toward the construction of these task-specific PAs.
Collapse
Affiliation(s)
- Antara Dasgupta
- Eris Lifesciences , Plot Nos. 30 and 31, Brahmaputra Industrial Park, Amingaon, North Guwahati , Guwahati , Assam 781031 , India
| | - Debapratim Das
- Department of Chemistry , Indian Institute of Technology Guwahati , Assam - 781039 , India
| |
Collapse
|
12
|
Kamano Y, Tabata Y, Uji H, Kimura S. Chiral and random arrangements of flavin chromophores along cyclic peptide nanotubes on gold influencing differently on surface potential and piezoelectricity. RSC Adv 2019; 9:3618-3624. [PMID: 35518084 PMCID: PMC9060240 DOI: 10.1039/c8ra10466b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/20/2019] [Indexed: 11/21/2022] Open
Abstract
Two kinds of peptide nanotubes are prepared from cyclo(β-Asp(flavin)-β-alanine-β-alanine) (C3FAA) and cyclo(β-Asp(flavin)-ethylenediamine-succinic acid) (C3FES). The flavin chromophores are protruding on the C3FAA and C3FES peptide nanotube surfaces in random and chiral ways, respectively. The surface potentials of the C3FAA nanotube bundles on a gold substrate become larger than the C3FES nanotube bundles of the corresponding thicknesses. The converse piezoelectric coefficients are as small as less than 1 pm V−1. The peptide nanotube bundles are subjected to a thermal anneal treatment which raises up all the surface potentials and also the converse piezoelectricity of the C3FES nanotube bundles of 3 pm V−1. The macrodipole of the C3FAA nanotube and the chiral arrangement of the flavin groups in the C3FES nanotube are considered to contribute influentially to the surface potential and the piezoelectricity, respectively. Two kinds of peptide nanotubes are prepared from cyclo(β-Asp(flavin)-β-alanine-β-alanine) (C3FAA) and cyclo(β-Asp(flavin)-ethylenediamine-succinic acid) (C3FES).![]()
Collapse
Affiliation(s)
- Yusuke Kamano
- Department of Material Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Yuki Tabata
- Department of Material Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Hirotaka Uji
- Department of Material Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Shunsaku Kimura
- Department of Material Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| |
Collapse
|