1
|
Theodorakopoulos GV, Karousos DS, Favvas EP, Gotzias AD. Formation of Polyimide Membranes via Non-Solvent Induced Phase Separation: Insight from Molecular Dynamics Simulations. Chempluschem 2024; 89:e202300766. [PMID: 38624079 DOI: 10.1002/cplu.202300766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Molecular dynamics simulations were applied to investigate the formation of P84 polyimide membranes through the non-solvent induced phase separation (NIPS) process, considering two scenarios: one using a conventional organic solvent like n-methyl-2-pyrrolidone (NMP) and the other a greener alternative, γ-butyrolactone (GBL), with water serving as the non-solvent. Different compositions of polymer solutions were established along the binodal boundaries of the respective systems, derived from experimental cloud point data on the ternary phase diagram. The resulting polymer membranes were analyzed and compared in terms of their morphology. The wettability of their surfaces was notably affected by the polymer content in the initial casting solution and demonstrated a correlation with the Brunauer-Emmet-Teller (BET) specific surface area of the associated polymer nanostructures. The GBL solvent systems produced porous polymers qualitatively similar to those obtained with NMP, albeit with slightly narrower pore size distributions.
Collapse
Affiliation(s)
| | | | - Evangelos P Favvas
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Athens, Greece
| | | |
Collapse
|
2
|
Basko A, Lebedeva T, Yurov M, Ilyasova A, Elyashevich G, Lavrentyev V, Kalmykov D, Volkov A, Pochivalov K. Mechanism of PVDF Membrane Formation by NIPS Revisited: Effect of Precipitation Bath Nature and Polymer-Solvent Affinity. Polymers (Basel) 2023; 15:4307. [PMID: 37959987 PMCID: PMC10650574 DOI: 10.3390/polym15214307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
A new interpretation of the mechanism of the polyvinylidene fluoride (PVDF) membrane formation using the nonsolvent-induced phase separation (NIPS) method based on an analysis of the complete experimental phase diagram for the three-component mixture PVDF-dimethyl acetamide (DMAc)-water is proposed. The effects of the precipitation bath's harshness and thermodynamic affinity of the polymer's solvent on the morphology, crystalline structure, transport and physical-mechanical properties of the membranes are investigated. These characteristics were studied via scanning electron microscopy, wide-angle X-ray scattering, liquid-liquid porosimetry and standard methods of physico-mechanical analysis. It is established that an increase in DMAc concentration in the precipitation bath results in the growth of mean pore size from ~60 to ~150 nm and an increase in permeance from ~2.8 to ~8 L m-2 h-1 bar-1. It was observed that pore size transformations are accompanied by changes in the tensile strength of membranes from ~9 to ~11 and to 6 MPa, which were explained by the degeneration of finger-like pores and appearance of spherulitic structures in the samples. The addition of water to the dope solution decreased both the transport (mean pore size changed from ~55 to ~25 nm and permeance reduced from ~2.8 to ~0.5 L m-2 h-1 bar-1) and mechanical properties of the membranes (tensile strength decreased from ~9 to ~6 MPa). It is possible to conclude that the best membrane quality may be reached using pure DMAc as a solvent and a precipitation bath containing 10-30% wt. of DMAc, in addition to water.
Collapse
Affiliation(s)
- Andrey Basko
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
| | - Tatyana Lebedeva
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
| | - Mikhail Yurov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
| | - Anna Ilyasova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
| | - Galina Elyashevich
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 31 Bolshoy pr., 199004 St. Petersburg, Russia; (G.E.); (V.L.)
| | - Viktor Lavrentyev
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 31 Bolshoy pr., 199004 St. Petersburg, Russia; (G.E.); (V.L.)
| | - Denis Kalmykov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
- A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia;
| | - Alexey Volkov
- A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia;
| | - Konstantin Pochivalov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.); (T.L.); (M.Y.); (A.I.); (D.K.)
| |
Collapse
|
3
|
Miao Z, Qin L, Zhou Z, Zhou M, Fu H, Zhang L, Zhou J. Zwitterion-Modified Nanogel Responding to Temperature and Ionic Strength: A Dissipative Particle Dynamics Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13678-13687. [PMID: 37713407 DOI: 10.1021/acs.langmuir.3c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
The self-assembly and stimuli-responsive properties of nanogel poly(n-isopropylacrylamide) (p(NIPAm)) and zwitterion-modified nanogel poly(n-isopropylacrylamide-co-sulfobetainemethacrylate) (p(NIPAm-co-SBMA)) were explored by dissipative particle dynamics simulations. Simulation results reveal that for both types of nanogel, it is beneficial to form spherical nanogels at polymer concentrations of 5-10%. When the chain length (L) elongates from 10 to 40, the sizes of the nanogels enlarge. As for the p(NIPAm) nanogel, it shows thermoresponsiveness; when it switches to the hydrophilic state, the nanogel swells, and vice versa. The zwitterion-modified nanogel p(NIPAm-co-SBMA) possesses thermoresponsiveness and ionic strength responsiveness concurrently. At 293 K, both hydrophilic p(NIPAm) and superhydrophilic polysulfobetaine methacrylate (pSBMA) could appear on the outer surface of the nanogel; however, at 318 K, superhydrophilic pSBMA is on the outer surface to cover the hydrophobic p(NIPAm) core. As the temperature rises, the nanogel shrinks and remains antifouling all through. The salt-responsive property can be reflected by the nanogel size; the volumes of the nanogels in saline systems are larger than those in salt-free systems as the ionic condition inhibits the shrinkage of the zwitterionic pSBMA. This work exhibits the temperature-responsive and salt-responsive behavior of zwitterion-modified-pNIPAm nanogels at the molecular level and provides guidance in antifouling nanogel design.
Collapse
Affiliation(s)
- Zhaohong Miao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Lanlan Qin
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhaoxi Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Meng Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Heqing Fu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Lizhi Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
4
|
Javan Nikkhah S, Vandichel M. Modeling Polyzwitterion-Based Drug Delivery Platforms: A Perspective of the Current State-of-the-Art and Beyond. ACS ENGINEERING AU 2022; 2:274-294. [PMID: 35996394 PMCID: PMC9389590 DOI: 10.1021/acsengineeringau.2c00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Drug delivery platforms are anticipated to have biocompatible and bioinert surfaces. PEGylation of drug carriers is the most approved method since it improves water solubility and colloid stability and decreases the drug vehicles' interactions with blood components. Although this approach extends their biocompatibility, biorecognition mechanisms prevent them from biodistribution and thus efficient drug transfer. Recent studies have shown (poly)zwitterions to be alternatives for PEG with superior biocompatibility. (Poly)zwitterions are super hydrophilic, mainly stimuli-responsive, easy to functionalize and they display an extremely low protein adsorption and long biodistribution time. These unique characteristics make them already promising candidates as drug delivery carriers. Furthermore, since they have highly dense charged groups with opposite signs, (poly)zwitterions are intensely hydrated under physiological conditions. This exceptional hydration potential makes them ideal for the design of therapeutic vehicles with antifouling capability, i.e., preventing undesired sorption of biologics from the human body in the drug delivery vehicle. Therefore, (poly)zwitterionic materials have been broadly applied in stimuli-responsive "intelligent" drug delivery systems as well as tumor-targeting carriers because of their excellent biocompatibility, low cytotoxicity, insignificant immunogenicity, high stability, and long circulation time. To tailor (poly)zwitterionic drug vehicles, an interpretation of the structural and stimuli-responsive behavior of this type of polymer is essential. To this end, a direct study of molecular-level interactions, orientations, configurations, and physicochemical properties of (poly)zwitterions is required, which can be achieved via molecular modeling, which has become an influential tool for discovering new materials and understanding diverse material phenomena. As the essential bridge between science and engineering, molecular simulations enable the fundamental understanding of the encapsulation and release behavior of intelligent drug-loaded (poly)zwitterion nanoparticles and can help us to systematically design their next generations. When combined with experiments, modeling can make quantitative predictions. This perspective article aims to illustrate key recent developments in (poly)zwitterion-based drug delivery systems. We summarize how to use predictive multiscale molecular modeling techniques to successfully boost the development of intelligent multifunctional (poly)zwitterions-based systems.
Collapse
Affiliation(s)
- Sousa Javan Nikkhah
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Matthias Vandichel
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| |
Collapse
|
5
|
Wu F, Chen T, Miao Z, Zhang L, Zhou J. Simulated synthesis of silica nanowires by lyotropic liquid crystal template method. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2021.1951263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Fenghe Wu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology, Guangzhou, China
| | - Tinglu Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology, Guangzhou, China
| | - Zhaohong Miao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology, Guangzhou, China
| | - Lizhi Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology, Guangzhou, China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology, Guangzhou, China
| |
Collapse
|
6
|
Zhu H, Chen Z, Qin L, Zhang L, Zhou J. Simulated preparation and hydration property of a new-generation zwitterionic modified PVDF membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Miao Z, Chen Z, Wang L, Zhang L, Zhou J. Dual-responsive zwitterion-modified nanopores:a mesoscopic simulation study. J Mater Chem B 2022; 10:2740-2749. [DOI: 10.1039/d1tb02416g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, dissipative particle dynamics simulation was carried out to investigate the intelligent switching effect of nanopores grafted by the zwitterionic polymer brushes poly(carboxybetaine) with excellent antifouling property. The...
Collapse
|
8
|
Sgouros AP, Knippenberg S, Guillaume M, Theodorou DN. Multiscale simulations of polyzwitterions in aqueous bulk solutions and brush array configurations. SOFT MATTER 2021; 17:10873-10890. [PMID: 34807216 DOI: 10.1039/d1sm01255j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zwitterionic polymers are very promising candidates for antifouling materials that exhibit high chemical stability as compared to polyethylene glycol-based systems. A number of simulation and experimental studies have emerged over recent years for the investigation of sulfobetaine-based zwitterionic polymers. Investigating the structural and thermodynamic properties of such polymers requires access to broad time and length regimes, thus necessitating the development of multiscale simulation strategies. The present article advocates a mesoscopic dissipative particle dynamics (DPD) model capable of addressing a wide range of time and length scales. The mesoscopic force field was developed hand-in-hand with atomistic simulations based on the OPLS force field through a bottom-up parameterization procedure that matches the atomistically calculated strand-length, strand-angle and pair distribution functions. The DPD model is validated against atomistic simulations conducted in this work, and against relevant atomistic simulation studies, theoretical predictions and experimental correlations from the literature. Properties examined include the conformations of SPE polymers in dilute bulk aqueous solution, the density profile and thickness of brush arrays as functions of the grafting density and chain length. In addition, we compute the potential of mean force of an approaching hydrophilic or hydrophobic foulant via umbrella sampling as a function of its position relative to the poly-zwitterion-covered surface. The aforementioned observables lead to important insights regarding the conformational tendencies of grafted polyzwitterions and their antifouling properties.
Collapse
Affiliation(s)
- Aristotelis P Sgouros
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Street, Zografou Campus, GR-15780 Athens, Greece.
| | - Stefan Knippenberg
- Solid State Battery Applicability Laboratory, Solvay SA, 310 Rue de Ransbeek, B-1120 Brussels, Belgium.
| | - Maxime Guillaume
- Solid State Battery Applicability Laboratory, Solvay SA, 310 Rue de Ransbeek, B-1120 Brussels, Belgium.
| | - Doros N Theodorou
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Street, Zografou Campus, GR-15780 Athens, Greece.
| |
Collapse
|
9
|
Tang Y, Lin Y, Ford DM, Qian X, Cervellere MR, Millett PC, Wang X. A review on models and simulations of membrane formation via phase inversion processes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119810] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Müller M, Abetz V. Nonequilibrium Processes in Polymer Membrane Formation: Theory and Experiment. Chem Rev 2021; 121:14189-14231. [PMID: 34032399 DOI: 10.1021/acs.chemrev.1c00029] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Porous polymer and copolymer membranes are useful for ultrafiltration of functional macromolecules, colloids, and water purification. In particular, block copolymer membranes offer a bottom-up approach to form isoporous membranes. To optimize permeability, selectivity, longevity, and cost, and to rationally design fabrication processes, direct insights into the spatiotemporal structure evolution are necessary. Because of a multitude of nonequilibrium processes in polymer membrane formation, theoretical predictions via continuum models and particle simulations remain a challenge. We compiled experimental observations and theoretical approaches for homo- and block copolymer membranes prepared by nonsolvent-induced phase separation and highlight the interplay of multiple nonequilibrium processes─evaporation, solvent-nonsolvent exchange, diffusion, hydrodynamic flow, viscoelasticity, macro- and microphase separation, and dynamic arrest─that dictates the complex structure of the membrane on different scales.
Collapse
Affiliation(s)
- Marcus Müller
- Georg-August Universität, Institut für Theoretische Physik, 37073 Göttingen, Germany
| | - Volker Abetz
- Helmholtz-Zentrum Hereon, Institut für Membranforschung, 21502 Geesthacht, Germany.,Universität Hamburg, Institut für Physikalische Chemie, 20146 Hamburg, Germany
| |
Collapse
|
11
|
Chiangraeng N, Keyen U, Yoshida N, Nimmanpipug P. Temperature-responsive morphology formation of a PS- b-PI copolymer: a dissipative particle dynamics simulation study. SOFT MATTER 2021; 17:6248-6258. [PMID: 34124726 DOI: 10.1039/d1sm00152c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembly responsiveness to stimuli of polystyrene-block-polyisoprene (PS-b-PI) diblock copolymer materials is explored by means of classical molecular dynamics (MD) and dissipative particle dynamics (DPD) simulations. A concerted relationship between the parameters achieved from atomistic and DPD simulations is obtained for this molecular recognition as clearly pronounced in a phase transition. Effects of temperature, model size and composition on the morphological formation were systematically investigated for the diblock copolymeric system. Structural changes resulting in the evolution of rheology as well as an equilibrium ordered structure were analyzed in terms of order parameters and radial distribution functions. From our models, various morphologies were observed including discrete clusters (sphere-liked morphology), connected clusters (gyroid-liked morphology), hexagonally packed cylinders (HEX), connected cylinders, irregular cylinders, perfect lamellae, perforated lamellae and defected lamellae. Based on this finding, a bottom-up multi-scale simulation of the PS-b-PI diblock copolymer provides a link between equilibrium copolymeric morphologies and the crucial parameters.
Collapse
Affiliation(s)
- Natthiti Chiangraeng
- Computational Simulation Modeling Laboratory, Department of Chemistry and Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. and Doctor of Philosophy Program in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ukrit Keyen
- Computational Simulation Modeling Laboratory, Department of Chemistry and Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Norio Yoshida
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Piyarat Nimmanpipug
- Computational Simulation Modeling Laboratory, Department of Chemistry and Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
12
|
Xu Z, He Z, Quan X, Sun D, Miao Z, Yu H, Yang S, Chen Z, Zeng J, Zhou J. Molecular simulations of charged complex fluids: A review. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Chen T, Wu F, Chen Z, Huo J, Zhao Y, Zhang L, Zhou J. Computer simulation of zwitterionic polymer brush grafted silica nanoparticles to modify polyvinylidene fluoride membrane. J Colloid Interface Sci 2020; 587:173-182. [PMID: 33360890 DOI: 10.1016/j.jcis.2020.11.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/22/2020] [Accepted: 11/30/2020] [Indexed: 01/22/2023]
Abstract
Dissipative particle dynamics (DPD) simulations was adopted to investigate the modification of polyvinylidene fluoride (PVDF) membrane by adding zwitterionic polymer brush poly(sulfobetaine methacrylate)- tetraethyl orthosilicate (PSBMA-TEOS) grafted silicon nanoparticles (SNPs) to the casting solution. The effects of polymer concentration and grafting architecture (PSBMA length and SNPs grafting ratio) on membrane morphology are discussed. When the polymer concentration reaches 40%, part of the SNPs is embedded in the membrane; the optimal polymer concentration is around 25-30%. In the SNPs system with the grafting ratio of 1, some SNPs are eluted into solution during phase separation. Compared with different grafting architectures, M8-5, M10-5 and M12-5 system (Mx-y, where x represents the length of the zwitterionic polymer brush and y represents the grafting ratio of the silica nanoparticles) exhibited stable membrane morphologies. This work can provide guidance for the design and modification of organic-inorganic composite membrane and help understand the distribution of modified materials on the membrane surface.
Collapse
Affiliation(s)
- Tinglu Chen
- Guangdong Provincial Key Laboratory for Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fenghe Wu
- Guangdong Provincial Key Laboratory for Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zheng Chen
- Guangdong Provincial Key Laboratory for Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinhao Huo
- Guangdong Provincial Key Laboratory for Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yue Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Lizhi Zhang
- Guangdong Provincial Key Laboratory for Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jian Zhou
- Guangdong Provincial Key Laboratory for Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
14
|
Feng YH, Zhang XP, Zhao ZQ, Guo XD. Dissipative Particle Dynamics Aided Design of Drug Delivery Systems: A Review. Mol Pharm 2020; 17:1778-1799. [DOI: 10.1021/acs.molpharmaceut.0c00175] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yun Hao Feng
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Xiao Peng Zhang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Ze Qiang Zhao
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Xin Dong Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| |
Collapse
|
15
|
Liu ZY, Jiang Q, Jin Z, Sun Z, Ma W, Wang Y. Understanding the Antifouling Mechanism of Zwitterionic Monomer-Grafted Polyvinylidene Difluoride Membranes: A Comparative Experimental and Molecular Dynamics Simulation Study. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14408-14417. [PMID: 30895780 DOI: 10.1021/acsami.8b22059] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The antifouling process of the membrane is very vital for the highly efficient treatment of industrial wastewater, especially high salinity wastewater containing oil and other pollutants. In the present work, the dynamical antifouling mechanism is explored via molecular dynamics simulations, while the corresponding experiments about surface properties of the zwitterionic monomer-grafted polyvinylidene difluoride membrane are designed to verify the simulated mechanism. Water can form a stable hydration layer at the grafted membrane surface, where all the simulated radial distribution function of water/membrane, hydrogen bond number, water diffusivity, and experimental oil contact angles are stable. However, the water flux across the membrane will increase first and then decrease as the grafting ratio increases, which not only depends on the reduced pore size of the zwitterionic monomer-grafted membrane but also results from water diffusion. Furthermore, the dynamical fouling processes of pollutants (taking sodium alginate as an example) on the grafted membrane in water and brine solution are investigated, where both the high grafting ratio and electrolyte CaCl2 can enhance the fouling energy barrier of the pollutant. The results show that both the enhanced hydrophilic property and the electrostatic repulsion can affect the antifouling capability of the grafted membrane. Finally, the ternary synergistic antifouling mechanisms among the zwitterionic membrane, electrolyte, and pollutant sodium alginates are discussed, which could be helpful for the rational design and preparation of new and highly efficient zwitterionic antifouling membranes.
Collapse
Affiliation(s)
- Zi-Yu Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Qin Jiang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Zhiqiang Jin
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Zhenyu Sun
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering , Beijing University of Chemical Technology , Beijing 100029 , People's Republic of China
| | - Wangjing Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems , Institute of Process Engineering , Beijing 100190 , People's Republic of China
| |
Collapse
|
16
|
|
17
|
Yang YL, Sheng YJ, Tsao HK. Bilayered membranes of Janus dendrimers with hybrid hydrogenated and fluorinated dendrons: microstructures and coassembly with lipids. Phys Chem Chem Phys 2019; 21:15400-15407. [DOI: 10.1039/c9cp01635j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A biomimetic membrane formed by hybrid Janus dendrimers (JDs) which contain hydrogenated and fluorinated dendrons was explored by dissipative particle dynamics simulations.
Collapse
Affiliation(s)
- Yan-Ling Yang
- Department of Chemical Engineering
- National Taiwan University
- Taipei 106
- Taiwan
| | - Yu-Jane Sheng
- Department of Chemical Engineering
- National Taiwan University
- Taipei 106
- Taiwan
| | - Heng-Kwong Tsao
- Department of Chemical and Materials Engineering
- National Central University
- Jhongli 320
- Taiwan
| |
Collapse
|