1
|
Malouch D, Berchel M, Dreanno C, Stachowski-Haberkorn S, Chalopin M, Godfrin Y, Jaffrès PA. Evaluation of lipophosphoramidates-based amphiphilic compounds on the formation of biofilms of marine bacteria. BIOFOULING 2023; 39:591-605. [PMID: 37584265 DOI: 10.1080/08927014.2023.2241377] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023]
Abstract
The bacteriostatic and/or bactericidal properties of few phosphoramide-based amphiphilic compounds on human pathogenic bacteria were previously reported. In this study, the potential of two cationic (BSV36 and KLN47) and two zwitterionic (3 and 4) amphiphiles as inhibitors of marine bacterial growth and biofilm formation were investigated. Results showed that the four compounds have little impact on the growth of a panel of 18 selected marine bacteria at a concentration of 200 µM, and up to 700 µM for some bacterial strains. Interestingly, cationic lipid BSV36 and zwitterionic lipids 3 and 4 effectively disrupt biofilm formation of Paracoccus sp. 4M6 and Vibrio sp. D02 at 200 µM and to a lesser extent of seven other bacterial strains tested. Moreover, ecotoxicological assays on four species of microalgae highlighted that compounds 3 and 4 have little impact on microalgae growth with EC50 values of 51 µM for the more sensitive species and up to 200 µM for most of the others. Amphiphilic compounds, especially zwitterionic amphiphiles 3 and 4 seem to be promising candidates against biofilm formation by marine bacteria.
Collapse
Affiliation(s)
- Dorsaf Malouch
- Univ Brest, CNRS, CEMCA UMR 6521, Brest, France
- Ifremer, Laboratoire Détection Capteurs et Mesures, Centre de Bretagne, Plouzané, France
| | | | - Catherine Dreanno
- Ifremer, Laboratoire Détection Capteurs et Mesures, Centre de Bretagne, Plouzané, France
| | | | - Morgane Chalopin
- Ifremer, Laboratoire Détection Capteurs et Mesures, Centre de Bretagne, Plouzané, France
| | | | | |
Collapse
|
2
|
Baidya A, Haghniaz R, Tom G, Edalati M, Kaneko N, Alizadeh P, Tavafoghi M, Khademhosseini A, Sheikhi A. A Cohesive Shear-Thinning Biomaterial for Catheter-Based Minimally Invasive Therapeutics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42852-42863. [PMID: 36121372 DOI: 10.1021/acsami.2c08799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Shear-thinning hydrogels are suitable biomaterials for catheter-based minimally invasive therapies; however, the tradeoff between injectability and mechanical integrity has limited their applications, particularly at high external shear stress such as that during endovascular procedures. Extensive molecular crosslinking often results in stiff, hard-to-inject hydrogels that may block catheters, whereas weak crosslinking renders hydrogels mechanically weak and susceptible to shear-induced fragmentation. Thus, controlling molecular interactions is necessary to improve the cohesion of catheter-deployable hydrogels. To address this material design challenge, we have developed an easily injectable, nonhemolytic, and noncytotoxic shear-thinning hydrogel with significantly enhanced cohesion via controlling noncovalent interactions. We show that enhancing the electrostatic interactions between weakly bound biopolymers (gelatin) and nanoparticles (silicate nanoplatelets) using a highly charged polycation at an optimum concentration increases cohesion without compromising injectability, whereas introducing excessive charge to the system leads to phase separation and loss of function. The cohesive biomaterial is successfully injected with a neuroendovascular catheter and retained without fragmentation in patient-derived three-dimensionally printed cerebral aneurysm models under a physiologically relevant pulsatile fluid flow, which would otherwise be impossible using the noncohesive hydrogel counterpart. This work sheds light on how charge-driven molecular and colloidal interactions in shear-thinning physical hydrogels improve cohesion, enabling complex minimally invasive procedures under flow, which may open new opportunities for developing the next generation of injectable biomaterials.
Collapse
Affiliation(s)
- Avijit Baidya
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Reihaneh Haghniaz
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California 90024, United States
| | - Gregory Tom
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Masoud Edalati
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Naoki Kaneko
- Division of Interventional Neuroradiology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Parvin Alizadeh
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Maryam Tavafoghi
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Ali Khademhosseini
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California 90024, United States
| | - Amir Sheikhi
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
3
|
Wang R, Yin C, Liu C, Sun Y, Xiao P, Li J, Yang S, Wu W, Jiang X. Phenylboronic Acid Modification Augments the Lysosome Escape and Antitumor Efficacy of a Cylindrical Polymer Brush-Based Prodrug. J Am Chem Soc 2021; 143:20927-20938. [PMID: 34855390 DOI: 10.1021/jacs.1c09741] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Timely lysosome escape is of paramount importance for endocytosed nanomedicines to avoid premature degradation under the acidic and hydrolytic conditions in lysosomes. Herein, we report an exciting finding that phenylboronic acid (PBA) modification can greatly facilitate the lysosome escape of cylindrical polymer brushes (CPBs). On the basis of our experimental results, we speculate that the mechanism is associated with the specific interactions of the PBA groups with lysosomal membrane proteins and hot shock proteins. The featured advantage of the PBA modification over the known lysosome escape strategies is that it does not cause significant adverse effects on the properties of the CPBs; on the contrary, it enhances remarkably their tumor accumulation and penetration. Furthermore, doxorubicin was conjugated to the PBA-modified CPBs with a drug loading content larger than 20%. This CPBs-based prodrug could eradicate the tumors established in mice by multiple intravenous administrations. This work provides a novel strategy for facilitating the lysosome escape of nanomaterials and demonstrates that PBA modification is an effective way to improve the overall properties of nanomedicines including the tumor therapeutic efficacy.
Collapse
Affiliation(s)
- Ruonan Wang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Changfeng Yin
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Changren Liu
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ying Sun
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Panpan Xiao
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jia Li
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Shuo Yang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Wei Wu
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
4
|
Niskanen J, Peltekoff AJ, Bullet JR, Lessard BH, Winnik FM. Enthalpy of the Complexation in Electrolyte Solutions of Polycations and Polyzwitterions of Different Structures and Topologies. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jukka Niskanen
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
- Faculté de Pharmacie et Département de Chimie, Université de Montréal, CP 6128 Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Alexander J. Peltekoff
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Jean-Richard Bullet
- Faculté de Pharmacie et Département de Chimie, Université de Montréal, CP 6128 Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Benoît H. Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Françoise M. Winnik
- Faculté de Pharmacie et Département de Chimie, Université de Montréal, CP 6128 Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
- International Center for Materials Nanoarchitectonics (WPN-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
5
|
Qiu X, Zhang J, Cao L, Jiao Q, Zhou J, Yang L, Zhang H, Wei Y. Antifouling Antioxidant Zwitterionic Dextran Hydrogels as Wound Dressing Materials with Excellent Healing Activities. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7060-7069. [PMID: 33543622 DOI: 10.1021/acsami.0c17744] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogels as wound dressings have received great attention in recent years. It is highly important yet challenging to develop hydrogel dressings that are biocompatible and that can promote wound healing by lowering the risk of inflammatory responses. In this work, we designed and prepared zwitterionic dextran-based hydrogels using carboxybetaine dextran (CB-Dex) and sulfobetaine dextran (SB-Dex) as raw materials, respectively. The efficacy of CB-Dex and SB-Dex hydrogels in promoting wound recovery was evaluated using a mouse skin wound model. Results suggested that the zwitterionic dextran wound dressings showed a faster healing rate than natural dextran hydrogel and a commercial wound dressing (Duoderm film) due to their excellent protein resistance and capacity to scavenge free hydroxyl radicals. In addition, both CB-Dex and SB-Dex hydrogel wound dressings showed excellent cytocompatibility with NIH3T3 and L929 cells, as well as antibacterial adhesion against Staphylococcus aureus and Escherichia coli. Furthermore, both zwitterionic hydrogels demonstrated self-healing properties and can be stretched to adapt to irregular full-thickness wound beds. More importantly, they can be removed from the wound site painlessly by washing with normal saline. Overall, this work provided a new pathway to fabricate multifunctional polysaccharide hydrogels for wound treatment and pain relief when changing wound dressings.
Collapse
Affiliation(s)
- Xia Qiu
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, P. R. China
| | - Jiamin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Lilong Cao
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, P. R. China
| | - Qin Jiao
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, P. R. China
| | - Junhao Zhou
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, P. R. China
| | - Lijun Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Hong Zhang
- Department of Applied Chemistry, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Yuping Wei
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
6
|
Ranjbar Bahadori S, Mulgaonkar A, Hart R, Wu CY, Zhang D, Pillai A, Hao Y, Sun X. Radiolabeling strategies and pharmacokinetic studies for metal based nanotheranostics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1671. [PMID: 33047504 DOI: 10.1002/wnan.1671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022]
Abstract
Radiolabeled metal-based nanoparticles (MNPs) have drawn considerable attention in the fields of nuclear medicine and molecular imaging, drug delivery, and radiation therapy, given the fact that they can be potentially used as diagnostic imaging and/or therapeutic agents, or even as theranostic combinations. Here, we present a systematic review on recent advances in the design and synthesis of MNPs with major focuses on their radiolabeling strategies and the determinants of their in vivo pharmacokinetics, and together how their intended applications would be impacted. For clarification, we categorize all reported radiolabeling strategies for MNPs into indirect and direct approaches. While indirect labeling simply refers to the use of bifunctional chelators or prosthetic groups conjugated to MNPs for post-synthesis labeling with radionuclides, we found that many practical direct labeling methodologies have been developed to incorporate radionuclides into the MNP core without using extra reagents, including chemisorption, radiochemical doping, hadronic bombardment, encapsulation, and isotope or cation exchange. From the perspective of practical use, a few relevant examples are presented and discussed in terms of their pros and cons. We further reviewed the determinants of in vivo pharmacokinetic parameters of MNPs, including factors influencing their in vivo absorption, distribution, metabolism, and elimination, and discussed the challenges and opportunities in the development of radiolabeled MNPs for in vivo biomedical applications. Taken together, we believe the cumulative advancement summarized in this review would provide a general guidance in the field for design and synthesis of radiolabeled MNPs towards practical realization of their much desired theranostic capabilities. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Diagnostic Nanodevices Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Shahab Ranjbar Bahadori
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Aditi Mulgaonkar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ryan Hart
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Cheng-Yang Wu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dianbo Zhang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Anil Pillai
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yaowu Hao
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Vázquez-González M, Willner I. Stimuli-Responsive Biomolecule-Based Hydrogels and Their Applications. Angew Chem Int Ed Engl 2020; 59:15342-15377. [PMID: 31730715 DOI: 10.1002/anie.201907670] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/10/2019] [Indexed: 12/16/2022]
Abstract
This Review presents polysaccharides, oligosaccharides, nucleic acids, peptides, and proteins as functional stimuli-responsive polymer scaffolds that yield hydrogels with controlled stiffness. Different physical or chemical triggers can be used to structurally reconfigure the crosslinking units and control the stiffness of the hydrogels. The integration of stimuli-responsive supramolecular complexes and stimuli-responsive biomolecular units as crosslinkers leads to hybrid hydrogels undergoing reversible triggered transitions across different stiffness states. Different applications of stimuli-responsive biomolecule-based hydrogels are discussed. The assembly of stimuli-responsive biomolecule-based hydrogel films on surfaces and their applications are discussed. The coating of drug-loaded nanoparticles with stimuli-responsive hydrogels for controlled drug release is also presented.
Collapse
Affiliation(s)
| | - Itamar Willner
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
8
|
Vázquez‐González M, Willner I. Stimuliresponsive, auf Biomolekülen basierende Hydrogele und ihre Anwendungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201907670] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Itamar Willner
- Institute of Chemistry Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
9
|
Huynh V, D’Angelo AD, Wylie RG. Tunable degradation of low-fouling carboxybetaine-hyaluronic acid hydrogels for applications in cell encapsulation. Biomed Mater 2019; 14:055003. [DOI: 10.1088/1748-605x/ab2bde] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Lin Y, Zeng Z, Li Y, Sun S, Liu X, He D, Li G. Self-healing zwitterionic sulfobetaine nanocomposite hydrogels with good mechanical properties. RSC Adv 2019; 9:31806-31811. [PMID: 35530781 PMCID: PMC9072991 DOI: 10.1039/c9ra06728k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/01/2019] [Indexed: 01/24/2023] Open
Abstract
The development of zwitterionic hydrogels possessing both excellent self-healing and mechanical properties is of great significance. Herein, a class of zwitterionic sulfobetaine nanocomposite hydrogels was prepared by UV-initiated copolymerisation of zwitterionic sulfobetaine monomer N,N-dimethyl-N-(3-methacrylamidopropyl)-N-(3-sulfopropyl) ammonium betaine (DMAPMAPS) and 2-hydroxyethyl methacrylate (HEMA) in the presence of exfoliated clay platelets uniformly dispersed in an aqueous medium. The effects of the hydrogel compositions, including the DMAPMAPS/HEMA mass ratio and the amount of clay, on the self-healing behaviors and mechanical properties of the nanocomposite hydrogels were investigated. The results indicate that the fabricated zwitterionic sulfobetaine nanocomposite hydrogels can autonomously repair incisions or cracks at ambient temperature without the need for any stimulus and possess excellent mechanical properties. The prepared zwitterionic sulfobetaine nanocomposite hydrogels can autonomously repair incisions or cracks at ambient temperature without the need for any stimulus and possess excellent mechanical properties.![]()
Collapse
Affiliation(s)
- Yinlei Lin
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan
- China
- School of Materials Science and Engineering
| | - Zheng Zeng
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Yuhao Li
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan
- China
| | - Sheng Sun
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan
- China
| | - Xiaoting Liu
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan
- China
| | - Deliu He
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
| | - Guangji Li
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
| |
Collapse
|