1
|
Kim BQ, Kim JQ, Yoon H, Lee E, Choi SQ, Kim K. Active Stratification of Colloidal Mixtures for Asymmetric Multilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404348. [PMID: 39150055 DOI: 10.1002/smll.202404348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Stratified films offer high performance and multifunctionality, yet achieving fully stratified films remains a challenge. The layer-by-layer method, involving the sequential deposition of each layer, has been commonly utilized for stratified film fabrication. However, this approach is time-consuming, labor-intensive, and prone to leaving defects within the film. Alternatively, the self-stratification process exploiting a drying binary colloidal mixture is intensively developed recently, but it relies on strict operating conditions, typically yielding a heterogeneous interlayer. In this study, an active interfacial stratification process for creating completely stratified nanoparticle (NP) films is introduced. The technique leverages NPs with varying interfacial activity at the air-water interface. With the help of depletion pressure, the lateral compression of NP mixtures at the interface induces individual desorption of less interfacial active NPs into the subphase, while more interfacial active NPs remain at the interface. This simple compression leads to nearly perfect stratified NP films with controllability, universality, and scalability. Combined with a solvent annealing process, the active stratification process enables the fabrication of stratified films comprising a polymeric layer atop a NP layer. This work provides insightful implications for designing drug encapsulation and controlled release, as well as manufacturing transparent and flexible electrodes.
Collapse
Affiliation(s)
- Baekmin Q Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jongmin Q Kim
- Interface Materials and Chemical Engineering Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Hojoon Yoon
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul, 01811, Republic of Korea
| | - EunSuk Lee
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul, 01811, Republic of Korea
| | - Siyoung Q Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute for the Nanocentury, KAIST, Daejeon, 34141, Republic of Korea
| | - KyuHan Kim
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul, 01811, Republic of Korea
| |
Collapse
|
2
|
Zhang Y, Wen G, Giaouzi D, Pispas S, Li J. Closely Packed Core-Shell Micelle Structures of Double Hydrophilic Miktoarm Star Copolymers at the Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8284-8290. [PMID: 38567402 DOI: 10.1021/acs.langmuir.4c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The aggregation behavior of amphiphilic block copolymers at the air-water interface has been extensively studied, but less attention was given to that of star copolymers. In this work, we studied the interfacial aggregation behavior of two double hydrophilic pH- and temperature-responsive miktoarm star copolymers of poly[di(ethylene glycol) methyl ether methacrylate]-poly[2-(dimethylamino)ethyl methacrylate] (PDEGMA3-PDMAEMA3 and PDEGMA4-PDMAEMA7, the subscripts denote arm numbers) with different molecular weights. The effects of subphase pH and temperature on the monolayer isotherms and hysteresis curves of the two star copolymers and the morphologies of their Langmuir-Blodgett (LB) films were studied by the Langmuir film balance technique and atomic force microscopy, respectively. At the air-water interface, the two star copolymers tend to form closely packed micelles. These micelles exhibit a core-shell structure, where the small hydrophobic core consists of cross-linker of ethylene glycol dimethacrylate (EGDMA) and the carbon backbones of PDEGMA and PDMAEMA arms and the short hydrophilic shell is composed of di(ethylene glycol) and tertiary amine side groups. With increasing subphase pH, the surface pressure versus molecular area isotherms shift toward larger mean molecular areas as a result of the enhanced interface adsorption of nonprotonated tertiary amine groups. The isotherm shift of PDEGMA3-PDMAEMA3 monolayers is primarily attributed to high density of tertiary amine groups in the shells, while that of PDEGMA4-PDMAEMA7 is mainly attributed to high density of di(ethylene glycol) groups in the shells. The hysteresis degrees in the monolayers of the two copolymers under alkaline and neutral conditions are greater than those under acidic conditions due to the decreased protonation degree of the tertiary amine groups. At 10 °C, the mobility of the shells is poor and the isotherms are located on the right. Above the lower critical solution temperature, di(ethylene glycol) groups contract, which causes a slight shift of the isotherms toward smaller mean molecular areas.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Polymer Materials and Engineering, College of Material Science and Chemical Engineering, Harbin University of Science and Technology, 4 Linyuan Road, Harbin 150040, People's Republic of China
| | - Gangyao Wen
- Department of Polymer Materials and Engineering, College of Material Science and Chemical Engineering, Harbin University of Science and Technology, 4 Linyuan Road, Harbin 150040, People's Republic of China
| | - Despoina Giaouzi
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Jian Li
- Department of Polymer Materials and Engineering, College of Material Science and Chemical Engineering, Harbin University of Science and Technology, 4 Linyuan Road, Harbin 150040, People's Republic of China
| |
Collapse
|
3
|
Khechine E, Noack S, Schlaad H, Xu J, Reiter G, Reiter R. Reversible Dehydration-Hydration of Poly(ethylene glycol) in Langmuir Monolayers of a Diblock Copolymer Inferred from Changes in Filament Curvature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2710-2718. [PMID: 36757479 DOI: 10.1021/acs.langmuir.2c03179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We investigated changes in the hydration state of poly(ethylene glycol) (PEG) through morphological changes in Langmuir monolayers of a PEG-poly(l-lactide) (PlLA) (PEG-b-PlLA) diblock copolymer. When the PEG blocks were hydrated, we observed a remarkable morphology of bundles of ring-like filaments, arranged concentrically, yielding densely packed disk-like objects with a hollow center. We attribute the uniform curvature of these filaments to a strong mismatch between the molecular volumes occupied by PlLA blocks and hydrated PEG blocks. Under the constraint that each hydrated PEG block is attached to a hydrophobic PlLA block anchored to the air-water interface, this mismatch of molecular volumes caused strong repulsion within the PEG layer, in particular when the PlLA blocks packed tightly. Induced by a transition in the ordering of the PlLA blocks, the PEG blocks lost their hydration shell and packed into a dense polymer brush, accompanied by a reduction of the pressure within the PEG layer. During this packing process, the curvature of the filaments was eliminated and the ring-like filaments fractured into small linear pieces. Upon compression, the linear pieces coalesced and formed long filaments aligned in parallel. Importantly, upon expansion of the Langmuir film, these changes in morphology were reversible, and the PEG blocks could be rehydrated and bundles of concentrically arranged ring-like filaments were reformed. We conclude that the change in curvature of the filaments provides a means for distinguishing between the hydrated and dehydrated states of PEG.
Collapse
Affiliation(s)
- Emna Khechine
- Institute of Physics, University of Freiburg, Hermann-Herder Street 3, 79104 Freiburg, Germany
| | - Sebastian Noack
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht Street 24-25, 14476 Potsdam, Germany
| | - Helmut Schlaad
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht Street 24-25, 14476 Potsdam, Germany
| | - Jun Xu
- Advanced Materials Laboratory of Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Günter Reiter
- Institute of Physics, University of Freiburg, Hermann-Herder Street 3, 79104 Freiburg, Germany
| | - Renate Reiter
- Institute of Physics, University of Freiburg, Hermann-Herder Street 3, 79104 Freiburg, Germany
| |
Collapse
|
4
|
Zhang Y, Wakabayashi R, Kimura T. Aerosol-assisted synthesis of titania-based spherical and fibrous materials with a rational design of mesopores using PS- b-PEO. Dalton Trans 2023; 52:1543-1550. [PMID: 36533632 DOI: 10.1039/d2dt03402f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Surfactant-assisted synthesis is a promising technique for the tailor-made design of highly porous metal oxide based nanomaterials. There has been a demand for the comprehensive design of their morphology, porous structure and crystallinity to extend potential applications using metal oxide based materials such as titania (TiO2). However, the porous structure is often deformed and/or destroyed during the process of crystallizing metal oxide frameworks. Herein, the aerosol-assisted synthesis of mesoporous TiO2 powders was conducted in the presence of high-molecular-weight poly(styrene)-block-poly(ethylene oxide) (PS-b-PEO), which improved the stability of the derivative mesoporous structure with an increase in the thickness of the TiO2 frameworks. To propose a rational synthetic route for stable and porous metal oxides, the resultant mesoporous structure and the textural morphology of the mesoporous TiO2 powders were surveyed using PS-b-PEO with different lengths of PS and PEO chains. By a judicious choice of the molecular structure of PS-b-PEO, the morphological design of the fully crystallized anatase phase of TiO2 from spherical to fibrous ones was achieved with control over the mesopore diameter.
Collapse
Affiliation(s)
- Yuxiao Zhang
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sakurazaka, Moriyama-ku, Nagoya 463-8560, Japan.
| | - Ryutaro Wakabayashi
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sakurazaka, Moriyama-ku, Nagoya 463-8560, Japan.
| | - Tatsuo Kimura
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sakurazaka, Moriyama-ku, Nagoya 463-8560, Japan.
| |
Collapse
|
5
|
Cui X, Zhang H, Liu Y, Jiang N, Lee YI, Liu HG. Temperature and molecular structure-dependent self-assembly of PS-b-PEO at the liquid/liquid interface. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Man Y, Li X, Li S, Yang Z, Lee YI, Liu HG. Effects of hydrophobic/hydrophilic blocks ratio on PS-b-PAA self-assembly in solutions, in emulsions, and at the interfaces. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Xu W, Wen G, Wu T, Chen N. Aggregation Behavior of the Blends of Homo-PS and PS- b-PEO- b-PS at the Air/Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13435-13441. [PMID: 31550898 DOI: 10.1021/acs.langmuir.9b02388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aggregation behaviors of the blended Langmuir monolayers of a homopolymer polystyrene (h-PS) and a triblock copolymer polystyrene-b-poly(ethylene oxide)-b-polystyrene (PS-b-PEO-b-PS) were studied by the Langmuir film balance technique, and the morphologies of their Langmuir-Blodgett (LB) films were studied by atomic force microscopy. The isotherms of the h-PS/PS-b-PEO-b-PS blends shift to small areas with the increase of h-PS content, and a pseudoplateau appears as h-PS content is below 60 wt %. It is worth noting that the blended isotherms appear at the left of their corresponding ideal ones, which means that the blended monolayers are a little more condensed due to attractive interactions between the two components. Hysteresis phenomena exist in all of the blended monolayers, and the higher the PS-b-PEO-b-PS content, the larger the hysteresis degree becomes because of the stronger looped-PEO entanglements. All the blended LB films of h-PS and PS-b-PEO-b-PS prepared under low pressure exhibit the mixed structures of small and large isolated circular aggregates. The small aggregates are the copolymer micelle cores and the large ones are attributed to coalescence of the local h-PS chains and some PS blocks. Upon further compression, the aggregates in the blended LB films become a little denser as h-PS content is below 60 wt %, whereas those become totally close-packed with decreased size as h-PS content is 80 wt %.
Collapse
Affiliation(s)
- Wei Xu
- Department of Polymer Materials and Engineering, College of Material Science and Engineering , Harbin University of Science and Technology , 4 Linyuan Road , Harbin 150040 , P. R. China
| | - Gangyao Wen
- Department of Polymer Materials and Engineering, College of Material Science and Engineering , Harbin University of Science and Technology , 4 Linyuan Road , Harbin 150040 , P. R. China
| | - Tao Wu
- Department of Polymer Materials and Engineering, College of Material Science and Engineering , Harbin University of Science and Technology , 4 Linyuan Road , Harbin 150040 , P. R. China
| | - Nanyang Chen
- Department of Polymer Materials and Engineering, College of Material Science and Engineering , Harbin University of Science and Technology , 4 Linyuan Road , Harbin 150040 , P. R. China
| |
Collapse
|
8
|
Man Y, Li S, Diao Q, Lee YI, Liu HG. PS-b-PAA/Cu two-dimensional nanoflowers fabricated at the liquid/liquid interface: A highly active and robust heterogeneous catalyst. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|