1
|
Le HN, Nguyen TBY, Nguyen DTT, Dao TBT, Nguyen TD, Ha Thuc CN. Sonochemical synthesis of bioinspired graphene oxide-zinc oxide hydrogel for antibacterial painting on biodegradable polylactide film. NANOTECHNOLOGY 2024; 35:305601. [PMID: 38640906 DOI: 10.1088/1361-6528/ad40b8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
Graphene oxide nanosheet (GO) is a multifunctional platform for binding with nanoparticles and stacking with two dimensional substrates. In this study, GO nanosheets were sonochemically decorated with zinc oxide nanoparticles (ZnO) and self-assembled into a hydrogel of GO-ZnO nanocomposite. The GO-ZnO hydrogel structure is a bioinspired approach for preserving graphene-based nanosheets from van der Waals stacking. X-ray diffraction analysis (XRD) showed that the sonochemical synthesis led to the formation of ZnO crystals on GO platforms. High water content (97.2%) of GO-ZnO hydrogel provided good property of ultrasonic dispersibility in water. Ultraviolet-visible spectroscopic analysis (UV-vis) revealed that optical band gap energy of ZnO nanoparticles (∼3.2 eV) GO-ZnO nanosheets (∼2.83 eV). Agar well diffusion tests presented effective antibacterial activities of GO-ZnO hydrogel against gram-negative bacteria (E. coli) and gram-positive bacteria (S. aureus). Especially, GO-ZnO hydrogel was directly used for brush painting on biodegradable polylactide (PLA) thin films. Graphene-based nanosheets with large surface area are key to van der Waals stacking and adhesion of GO-ZnO coating to the PLA substrate. The GO-ZnO/PLA films were characterized using photography, light transmittance spectroscopy, coating stability, scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopic mapping (EDS), antibacterial test and mechanical tensile measurement. Specifically, GO-ZnO coating on PLA substrate exhibited stability in aqueous food simulants for packaging application. GO-ZnO coating inhibited the infectious growth ofE. colibiofilm. GO-ZnO/PLA films had strong tensile strength and elastic modulus. As a result, the investigation of antibacterial GO-ZnO hydrogel and GO-ZnO coating on PLA film is fundamental for sustainable development of packaging and biomedical applications.
Collapse
Affiliation(s)
- Hon Nhien Le
- Faculty of Materials Science and Technology, VNUHCM University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Vietnam
| | - Thi Binh Yen Nguyen
- Faculty of Materials Science and Technology, VNUHCM University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Vietnam
| | - Dac Thanh Tung Nguyen
- Faculty of Materials Science and Technology, VNUHCM University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Vietnam
| | - Thi Bang Tam Dao
- Faculty of Materials Science and Technology, VNUHCM University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Vietnam
| | - Trung Do Nguyen
- Faculty of Materials Science and Technology, VNUHCM University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Vietnam
| | - Chi Nhan Ha Thuc
- Faculty of Materials Science and Technology, VNUHCM University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Vietnam
| |
Collapse
|
2
|
Khan A, Ibrar I, Mirdad A, Al-Juboori RA, Deka P, Subbiah S, Altaee A. Novel Approach to Landfill Wastewater Treatment Fouling Mitigation: Air Gap Membrane Distillation with Tin Sulfide-Coated PTFE Membrane. MEMBRANES 2023; 13:membranes13050483. [PMID: 37233544 DOI: 10.3390/membranes13050483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023]
Abstract
This study addressed the fouling issue in membrane distillation (M.D.) technology, a promising method for water purification and wastewater reclamation. To enhance the anti-fouling properties of the M.D. membrane, a tin sulfide (TS) coating onto polytetrafluoroethylene (PTFE) was proposed and evaluated with air gap membrane distillation (AGMD) using landfill leachate wastewater at high recovery rates (80% and 90%). The presence of TS on the membrane surface was confirmed using various techniques, such as Field Emission Scanning Electron Microscopy (FE-SEM), Fourier Transform Infrared Spectroscopy (FT-IR), Energy Dispersive Spectroscopy (EDS), contact angle measurement, and porosity analysis. The results indicated the TS-PTFE membrane exhibited better anti-fouling properties than the pristine PTFE membrane, and its fouling factors (FFs) were 10.4-13.1% compared to 14.4-16.5% for the PTFE membrane. The fouling was attributed to pore blockage and cake formation of carbonous and nitrogenous compounds. The study also found that physical cleaning with deionized (DI) water effectively restored the water flux, with more than 97% recovered for the TS-PTFE membrane. Additionally, the TS-PTFE membrane showed better water flux and product quality at 55 °C and excellent stability in maintaining the contact angle over time compared to the PTFE membrane.
Collapse
Affiliation(s)
- Abdulaziz Khan
- Mechanical and Mechatronic Engineering (MME), University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
- Mechanical Department at Taif Technical College, Technical and Vocational Training Corporation (TVTC), Riyadh 11564, Saudi Arabia
| | - Ibrar Ibrar
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| | - Abeer Mirdad
- Faculty of Engineering and Information Technology, University of Technology Sydney, 5 Broadway, Sydney, NSW 2007, Australia
| | - Raed A Al-Juboori
- NYUAD Water Research Centre, New York University-Abu Dhabi Campus, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Priyamjeet Deka
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Senthilmurugan Subbiah
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| |
Collapse
|
3
|
Sun X, Yang J, Ma J, Wang T, Zhao X, Zhu D, Jin W, Zhang K, Sun X, Shen Y, Xie N, Yang F, Shang X, Li S, Zhou X, He C, Zhang D, Wang J. Three-dimensional bioprinted BMSCs-laden highly adhesive artificial periosteum containing gelatin-dopamine and graphene oxide nanosheets promoting bone defect repair. Biofabrication 2023; 15. [PMID: 36716493 DOI: 10.1088/1758-5090/acb73e] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
The periosteum is a connective tissue membrane adhering to the surface of bone tissue that primarily provides nutrients and regulates osteogenesis during bone development and injury healing. However, building an artificial periosteum with good adhesion properties and satisfactory osteogenesis for bone defect repair remains a challenge, especially using three-dimensional (3D) bioprinting. In this study, dopamine was first grafted onto the molecular chain of gelatin usingN-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride andN-hydroxysuccinimide (NHS) to activate the carboxyl group and produce modified gelatin-dopamine (GelDA). Next, a methacrylated gelatin, methacrylated silk fibroin, GelDA, and graphene oxide nanosheet composite bioink loaded with bone marrow mesenchymal stem cells was prepared and used for bioprinting. The physicochemical properties, biocompatibility, and osteogenic roles of the bioink and 3D bioprinted artificial periosteum were then systematically evaluated. The results showed that the developed bioink showed good thermosensitivity and printability and could be used to build 3D bioprinted artificial periosteum with satisfactory cell viability and high adhesion. Finally, the 3D bioprinted artificial periosteum could effectively enhance osteogenesis bothin vitroandin vivo. Thus, the developed 3D bioprinted artificial periosteum can prompt new bone formation and provides a promising strategy for bone defect repair.
Collapse
Affiliation(s)
- Xin Sun
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Jin Yang
- College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, People's Republic of China
| | - Jie Ma
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Tianchang Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Xue Zhao
- Department of Radiology, Huangpu Branch of Shanghai Ninth People's Hospital, affiliated to Shanghai Jiao Tong University, No. 58 Puyu East Road, Shanghai 200011, People's Republic of China
| | - Dan Zhu
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai 201999, People's Republic of China
| | - Wenjie Jin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Kai Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Xuzhou Sun
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Yuling Shen
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Neng Xie
- Shanghai Evaluation and Verification Center for Medical Devices and Cosmetics, No. 210 Nanchang Road, Shanghai 200020, People's Republic of China
| | - Fei Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China
| | - Xiushuai Shang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, People's Republic of China
| | - Shuai Li
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, People's Republic of China
| | - Xiaojun Zhou
- College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, People's Republic of China
| | - Chuanglong He
- College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, People's Republic of China
| | - Deteng Zhang
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, Shandong, People's Republic of China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai 200001, People's Republic of China.,School of Rehabilitation Medicine, Weifang Medical University, No. 7166 Baotong West Street, Weifang 261053, Shangdong, People's Republic of China
| |
Collapse
|
4
|
Guan K, Ushio K, Nakagawa K, Shintani T, Yoshioka T, Matsuoka A, Kamio E, Jin W, Matsuyama H. Integration of thin film composite graphene oxide membranes for solvent resistant nanofiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
5
|
Zou S, Tao LQ, Wang G, Zhu C, Peng Z, Sun H, Li Y, Wei Y, Ren TL. Humidity-Based Human-Machine Interaction System for Healthcare Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12606-12616. [PMID: 35230086 DOI: 10.1021/acsami.1c23725] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human-machine interaction (HMI) systems are widely used in the healthcare field, and they play an essential role in assisting the rehabilitation of patients. Currently, a large number of HMI-related research studies focus on piezoresistive sensors, self-power sensors, visual and auditory receivers, and so forth. These sensing modalities do not possess high reliability with regard to breathing condition detection. The humidity signal conveyed by breathing provides excellent stability and a fast response; however, humidity-based HMI systems have rarely been studied. Herein, we integrate a humidity sensor and a graphene thermoacoustic device into a humidity-based HMI system (HHMIS), which is capable of monitoring respiratory signals and emitting acoustic signals. HHMIS has a practical value in healthcare to assist patients. For example, it works as a prewarning system for respiratory-related disease patients with abnormal respiratory rates, and as an artificial throat device for aphasia patients. Achieved based on a laser direct writing technology, this wearable device features low cost, high flexibility, and can be prepared on a large scale. This portable non-contact HMMIS has broad application prospects in many fields such as medical health and intelligent control.
Collapse
Affiliation(s)
- Simin Zou
- School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
- Institution of Microelectronics, Tsinghua University, Beijing 100084, China
| | - Lu-Qi Tao
- School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guanya Wang
- School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
- Institution of Microelectronics, Tsinghua University, Beijing 100084, China
| | - Congcong Zhu
- School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
- School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhirong Peng
- School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Hao Sun
- School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Yibin Li
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Yaoguang Wei
- Heart-forever (Beijing) Technology Co., Ltd, Beijing 100085, China
| | - Tian-Ling Ren
- Institution of Microelectronics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Hu Z, Wang S, Yang Y, Zhou F, Liang S, Chen L. Enhanced Separation Performance of Radioactive Cesium and Cobalt in Graphene Oxide Membrane via Cationic Control. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1995-2002. [PMID: 35113573 DOI: 10.1021/acs.langmuir.1c02656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The great applications of nuclear power for the most promising clean energy sources have been challenged by a large amount of radioactive wastewater generated, specifically the Cs+/Co2+ separation for nuclear waste storage, retreatment or recycling of radioactive wastewater, because of their wide difference in half-life and high heat release. In this work, graphene oxide membranes (GOMs) with interlayer spacing controlled by cations were used to separate mixed Cs+/Co2+ ions. The separation factors of Cs+/Co2+ for K+-controlled graphene oxide membranes (K-GOMs) was 2∼3 times higher than that of GOMs without treatment. In addition, the separation factors of Cs+/Co2+ for K-GOMs can be further enhanced with the increase of membranes thickness and change the initial ratios of the two ions. Typically, the separation factors of K-GOMs with a thickness of ∼300 nm reached up to 73.7 ± 3.9. Moreover, the K-GOM showed outstanding stability of the separation performance under long-term operation within 7 days. First-principles calculation revealed that the enhanced ionic selectivity of controlled GOM is induced by the difference of adsorption energies between the hydrated cations and aromatic rings, resulting in a significant increase in the mobility differences between Cs+ and Co2+ through a fixed narrow interlayer spacing. This study demonstrated excellent separation performances of GO-based membranes based on their size-exclusion effect rather than electrostatic repulsion effect, and we believe this work can enable potential efficient treatment technologies for radioactive wastewater needed urgently.
Collapse
Affiliation(s)
- Zuyan Hu
- Department of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, China
| | - Shuai Wang
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yizhou Yang
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Zhou
- Radiation Monitoring Technical Center of Ministry of Ecology and Environment, Key Laboratory of Radiation Environmental Safety Monitoring of Zhejiang Province, State Environmental Protection Key Laboratory of Radiation Environmental Monitoring, Hangzhou 310012, China
| | - Shanshan Liang
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Chen
- Department of Environment and Resources, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
7
|
Liu Z, Ma Z, Qian B, Chan AYH, Wang X, Liu Y, Xin JH. A Facile and Scalable Method of Fabrication of Large-Area Ultrathin Graphene Oxide Nanofiltration Membrane. ACS NANO 2021; 15:15294-15305. [PMID: 34478273 DOI: 10.1021/acsnano.1c06155] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With their ultrafast water transport and excellent molecule sieving properties, graphene oxide (GO)-based membranes show great potential in the membrane filtration field for water purification and molecular separation. However, the inability of uniform GO membranes to be produced on an industrial scale and their nonenvironmentally friendly reduction treatment are the bottleneck preventing their industrial applications. Herein, we report a scalable ultrathin uniform GO membrane fabrication technique. Ultrathin GO membranes with a large area of 30 × 80 cm2 and a thickness of a few nanometers were uniformly and facilely fabricated using a continuous process combining Mayer rod-coating and a short-time, high-power UV reduction. The interlayer spacing of the GO membrane could be effectively reduced and regulated to improve the salt rejection rate. The fabricated membrane showed superior water permeability of over 60.0 kg m-2 h-1 and a high separation efficiency of over 96.0% for a sodium sulfate (Na2SO4) solution. It also exhibited excellent mechanical stability under various harsh crossflow conditions. More importantly, the fabrication method developed here can be scaled up using a roll-to-roll industrial production process, which successfully solves the problem currently faced by GO membrane researchers and makes the industrial usage of GO membrane a reality.
Collapse
Affiliation(s)
- Zhiyu Liu
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Zhong Ma
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Baitai Qian
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Anson Y H Chan
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Xiaowen Wang
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Yang Liu
- Department of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - John H Xin
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| |
Collapse
|
8
|
Fang WZ, Peng L, Liu YJ, Wang F, Xu Z, Gao C. A Review on Graphene Oxide Two-dimensional Macromolecules: from Single Molecules to Macro-assembly. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-021-2515-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Zhang M, Mao Y, Liu G, Liu G, Fan Y, Jin W. Molecular Bridges Stabilize Graphene Oxide Membranes in Water. Angew Chem Int Ed Engl 2019; 59:1689-1695. [PMID: 31721384 DOI: 10.1002/anie.201913010] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Indexed: 01/09/2023]
Abstract
Recent innovations highlight the great potential of two-dimensional graphene oxide (GO) films in water-related applications. However, undesirable water-induced effects, such as the redispersion and peeling of stacked GO laminates, greatly limit their performance and impact their practical application. It remains a great challenge to stabilize GO membranes in water. A molecular bridge strategy is reported in which an interlaminar short-chain molecular bridge generates a robust GO laminate that resists the tendency to swell. Furthermore, an interfacial long-chain molecular bridge adheres the GO laminate to a porous substrate to increase the mechanical strength of the membrane. By rationally creating and tuning the molecular bridges, the stabilized GO membranes can exhibit outstanding durability in harsh operating conditions, such as cross-flow, high-pressure, and long-term filtration. This general and scalable stabilizing approach for GO membranes provides new opportunities for reliable two-dimensional laminar films used in aqueous environments.
Collapse
Affiliation(s)
- Mengchen Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 210009, P. R. China
| | - Yangyang Mao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 210009, P. R. China
| | - Guozhen Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 210009, P. R. China
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 210009, P. R. China
| | - Yiqun Fan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 210009, P. R. China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 210009, P. R. China
| |
Collapse
|
10
|
Zhang M, Mao Y, Liu G, Liu G, Fan Y, Jin W. Molecular Bridges Stabilize Graphene Oxide Membranes in Water. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mengchen Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 210009 P. R. China
| | - Yangyang Mao
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 210009 P. R. China
| | - Guozhen Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 210009 P. R. China
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 210009 P. R. China
| | - Yiqun Fan
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 210009 P. R. China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 210009 P. R. China
| |
Collapse
|
11
|
Lei X, Tay SW, Ong PJ, Hong L. Organic Dye Solution Nanofiltration by 2D Zn-TCPP(Fe) Membrane – leverage of chemical and fluid dynamic effects. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Zhang M, Sun J, Mao Y, Liu G, Jin W. Effect of substrate on formation and nanofiltration performance of graphene oxide membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.071] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|