1
|
Song X, Man J, Qiu Y, Wang J, Liu J, Li R, Zhang Y, Li J, Li J, Chen Y. Design, preparation, and characterization of lubricating polymer brushes for biomedical applications. Acta Biomater 2024; 175:76-105. [PMID: 38128641 DOI: 10.1016/j.actbio.2023.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The lubrication modification of biomedical devices significantly enhances the functionality of implanted interventional medical devices, thereby providing additional benefits for patients. Polymer brush coating provides a convenient and efficient method for surface modification while ensuring the preservation of the substrate's original properties. The current research has focused on a "trial and error" method to finding polymer brushes with superior lubricity qualities, which is time-consuming and expensive, as obtaining effective and long-lasting lubricity properties for polymer brushes is difficult. This review summarizes recent research advances in the biomedical field in the design, material selection, preparation, and characterization of lubricating and antifouling polymer brushes, which follow the polymer brush development process. This review begins by examining various approaches to polymer brush design, including molecular dynamics simulation and machine learning, from the fundamentals of polymer brush lubrication. Recent advancements in polymer brush design are then synthesized and potential avenues for future research are explored. Emphasis is placed on the burgeoning field of zwitterionic polymer brushes, and highlighting the broad prospects of supramolecular polymer brushes based on host-guest interactions in the field of self-repairing polymer brush applications. The review culminates by providing a summary of methodologies for characterizing the structural and functional attributes of polymer brushes. It is believed that a development approach for polymer brushes based on "design-material selection-preparation-characterization" can be created, easing the challenge of creating polymer brushes with high-performance lubricating qualities and enabling the on-demand creation of coatings. STATEMENT OF SIGNIFICANCE: Biomedical devices have severe lubrication modification needs, and surface lubrication modification by polymer brush coating is currently the most promising means. However, the design and preparation of polymer brushes often involves "iterative testing" to find polymer brushes with excellent lubrication properties, which is both time-consuming and expensive. This review proposes a polymer brush development process based on the "design-material selection-preparation-characterization" strategy and summarizes recent research advances and trends in the design, material selection, preparation, and characterization of polymer brushes. This review will help polymer brush researchers by alleviating the challenges of creating polymer brushes with high-performance lubricity and promises to enable the on-demand construction of polymer brush lubrication coatings.
Collapse
Affiliation(s)
- Xinzhong Song
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China.
| | - Yinghua Qiu
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jiali Wang
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Jianing Liu
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Ruijian Li
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Yongqi Zhang
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Yuguo Chen
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| |
Collapse
|
2
|
Feliciano A, Soares E, Bosman AW, van Blitterswijk C, Moroni L, LaPointe VLS, Baker MB. Complementary Supramolecular Functionalization Enhances Antifouling Surfaces: A Ureidopyrimidinone-Functionalized Phosphorylcholine Polymer. ACS Biomater Sci Eng 2023; 9:4619-4631. [PMID: 37413691 PMCID: PMC10428092 DOI: 10.1021/acsbiomaterials.3c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023]
Abstract
Fibrosis of implants remains a significant challenge in the use of biomedical devices and tissue engineering materials. Antifouling coatings, including synthetic zwitterionic coatings, have been developed to prevent fouling and cell adhesion to several implantable biomaterials. While many of these coatings need covalent attachment, a conceptually simpler approach is to use a spontaneous self-assembly event to anchor the coating to a surface. This could simplify material processing through highly specific molecular recognition. Herein, we investigate the ability to utilize directional supramolecular interactions to anchor an antifouling coating to a polymer surface containing a complementary supramolecular unit. A library of controlled copolymerization of ureidopyrimidinone methacrylate (UPyMA) and 2-methacryloyloxyethyl phosphorylcholine (MPC) was prepared and their UPy composition was assessed. The MPC-UPy copolymers were characterized by 1H NMR, Fourier transform infrared (FTIR), and gel permeation chromatography (GPC) and found to exhibit similar mol % of UPy as compared to feed ratios and low dispersities. The copolymers were then coated on an UPy elastomer and the surfaces were assessed for hydrophilicity, protein absorption, and cell adhesion. By challenging the coatings, we found that the antifouling properties of the MPC-UPy copolymers with more UPy mol % lasted longer than the MPC homopolymer or low UPy mol % copolymers. As a result, the bioantifouling nature could be tuned to exhibit spatio-temporal control, namely, the longevity of a coating increased with UPy composition. In addition, these coatings showed nontoxicity and biocompatibility, indicating their potential use in biomaterials as antifouling coatings. Surface modification employing supramolecular interactions provided an approach that merges the simplicity and scalability of nonspecific coating methodology with the specific anchoring capacity found when using conventional covalent grafting with longevity that could be engineered by the supramolecular composition itself.
Collapse
Affiliation(s)
- Antonio
J. Feliciano
- Maastricht
University, MERLN, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Eduardo Soares
- Maastricht
University, MERLN, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Anton W. Bosman
- SupraPolix
B.V., Horsten 1, 5612 AX Eindhoven, The Netherlands
| | | | - Lorenzo Moroni
- Maastricht
University, MERLN, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Vanessa L. S. LaPointe
- Maastricht
University, MERLN, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Matthew B. Baker
- Maastricht
University, MERLN, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
3
|
Cu-adherent poly(ether ether ketone) with low dielectric loss via self UV-initiated surface modification for high frequency application. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Yan Y, Gao C, Li J, Zhang T, Yang G, Wang Z, Hua Z. Modulating Morphologies and Surface Properties of Nanoparticles from Cellulose-Grafted Bottlebrush Copolymers Using Complementary Hydrogen-Bonding between Nucleobases. Biomacromolecules 2020; 21:613-620. [PMID: 31841316 DOI: 10.1021/acs.biomac.9b01345] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herein we report the synthesis of a cellulose-grafted bottlebrush copolymer with nucleobases as hydrophobic moieties. Well-defined spherical micelles from this bottlebrush copolymer were fabricated via a solvent switch method. A morphological transition from spheres to worms was only observed to occur when a diblock copolymer with a complementary nucleobase functionality was introduced. Hydrophobic interaction is not capable of triggering the morphological transformation, and the diblock copolymer with the heterogeneous acrylamide nucleobase monomer can induce the morphological transition at higher A:T molar ratios, which might be caused by the weak H-bonding interaction. This supramolecular "grafting to" method enables the preparation of a series of nanoparticles with similar shapes and dimensions but distinct surface properties such as zeta potentials. Moreover, reversible morphological transitions between worm-like micelles and spheres can be achieved using a reversible collapsing and swelling of a thermoresponsive polymer. This work highlights that a supramolecular "grafting to" approach between complementary nucleobases can be utilized to tune morphologies and surface properties of nanoparticles.
Collapse
|
6
|
Yu H, Zhong QZ, Liu TG, Qiu WZ, Wu BH, Xu ZK, Wan LS. Surface Deposition of Juglone/Fe III on Microporous Membranes for Oil/Water Separation and Dye Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3643-3650. [PMID: 30773014 DOI: 10.1021/acs.langmuir.8b03914] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Deposition of dopamine and tannic acid has received great attention in the fields of surface and interface science and technology. The deposition behaviors of various metal-phenolic systems have been investigated, and it is generally accepted that at least one catechol group is essential to the formation of the coatings. Herein, we report a novel and effective surface-coating system based on the coordination complexes of FeIII ions with a natural product juglone that contains only one phenolic hydroxyl. We investigated the deposition behaviors of this novel system on various substrates. Microporous polypropylene membrane modified with juglone/FeIII coatings is superhydrophilic and underwater superoleophobic, showing high separation efficiency and good reusability for various oil/water emulsions. In addition, the modified membrane can adsorb anionic dyes and selectively remove them from dye mixtures with high efficiency. We further demonstrated that the coating is a result of the synergetic effect of juglone/FeIII coordination and FeIII hydrolysis. This work not only provides new insights into surface deposition systems but also expands the polyphenol family for surface coatings of multifunctional materials.
Collapse
Affiliation(s)
- Hui Yu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Qi-Zhi Zhong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Tian-Geng Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Wen-Ze Qiu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Bai-Heng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Ling-Shu Wan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|