1
|
Shrestha A, Sumiya Y, Okazawa K, Tsuji Y, Yoshizawa K. Density Functional Theory Study of Adhesion Mechanism between Epoxy Resins Cured with 4,4'-Diaminodiphenyl Sulfone and 4,4'-Diaminodiphenylmethane and Carboxyl Functionalized Carbon Fiber. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21573-21586. [PMID: 39362785 DOI: 10.1021/acs.langmuir.4c02473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The molecular mechanism of adhesion of two epoxy resins based on diglycidylether of bisphenol A (DGEBA) cured with 4,4'-diaminodiphenyl sulfone (DDS) and 4,4'-diaminodiphenylmethane (DDM) to the carbon fiber (CF) surface is investigated by employing density functional theory (DFT) calculations. The CF surface was modeled by the armchair-edge structure of graphite functionalized with carboxyl (COOH) groups. Two adhesion interfaces were constructed using the CF surface: one with the DGEBA-DDS molecule (CF/DGEBA-DDS interface) and the other with the DGEBA-DDM molecule (CF/DGEBA-DDM interface). The interfacial properties were analyzed by calculating the maximum adhesion stress (Smax) at the interface. The adhesion stress-displacement curve revealed that Smax is 1160.37 MPa, higher for the CF/DGEBA-DDS interface compared to the CF/DGEBA-DDM interface, which is 1060.48 MPa. The energy decomposition analysis showed a similar DFT contribution to adhesion stress for both interfaces, but the dispersion contribution is more significant at the CF/DGEBA-DDS interface. The crystal orbital Hamilton population (COHP) analysis revealed distinct interfacial interactions despite similar DFT contributions. Hydrogen bonding (H-bonding) between the functional groups at both interfaces including feeble OH-π interactions between the benzene rings of epoxy resins and COOH groups on the CF surface were observed. The orbital interaction energies calculated from integrated COHP, i.e., IpCOHP, revealed that the CF/DGEBA-DDS interface has six H-bonding interactions with large absolute IpCOHP values (>1 eV), whereas the CF/DGEBA-DDM interface has five. The interaction between the amine group of the DGEBA-DDM molecule and the CF surface has a large IpCOHP value among all interactions. The sulfone group being at the center of the DDS molecule and its strong surface interaction positioned the DGEBA-DDS molecule closer to the CF surface than the DGEBA-DDM molecule, enhancing dispersion interaction at the CF/DGEBA-DDS interface. Hence, the CF surface exhibits a stronger affinity toward the DGEBA-DDS molecule than the DGEBA-DDM molecule through dispersion interaction.
Collapse
Affiliation(s)
- Amit Shrestha
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yosuke Sumiya
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Kazuki Okazawa
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yuta Tsuji
- Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Kazunari Yoshizawa
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
2
|
Shimokita K, Yamamoto K, Miyata N, Shibata M, Nakanishi Y, Arakawa M, Takenaka M, Kida T, Tokumitsu K, Tanaka R, Shiono T, Yamada M, Seto H, Yamada NL, Aoki H, Miyazaki T. Neutron Reflectivity Study on the Adsorption Layer of Polyethylene Grown on Si Substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39012261 DOI: 10.1021/acs.langmuir.4c01584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
To investigate the structure of the interface between polyethylene films and substrates, the neutron reflectivity (NR) of deuterated polyethylene (dPE) thin films deposited on Si substrates was measured, demonstrating water accumulation at the interface, even under ambient conditions. After leaching the thermally annealed dPE films in hot p-xylene, NR measurements were conducted on the layers remaining on the substrate, clearly revealing that the adsorption layer of dPE grew during annealing and consisted of two layers, an inner adsorption layer and an outer adsorption layer, as previously proposed for amorphous polymers. The inner adsorption layer was approximately 3.7 nm thick with a density comparable to that of the bulk. The outer adsorption layer was several nanometers thick and appeared to grow insufficiently on top of the inner adsorption layer under the annealing conditions examined in this study. This study clarifying the growth of the adsorption layer of polyethylene at the interface with an inorganic substrate is useful for improving the performance of polymer/inorganic filler nanocomposites due to the wide utility of crystalline polyolefins as polymer matrix materials in nanocomposites.
Collapse
Affiliation(s)
- Keisuke Shimokita
- Department of Life Science and Applied Chemistry, Gradual School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Katsuhiro Yamamoto
- Department of Life Science and Applied Chemistry, Gradual School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Noboru Miyata
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Motoki Shibata
- Office of Society-Academia Collaboration for Innovation, Kyoto University, Sakyou-ku, Kyoto 606-8501, Japan
| | - Yohei Nakanishi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masato Arakawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Mikihito Takenaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takumitsu Kida
- Department of Materials Chemistry, Faculty of Engineering, The University of Shiga Prefecture, 2500 Hassaka, Hikone 522-8533, Japan
| | - Katsuhisa Tokumitsu
- Department of Materials Chemistry, Faculty of Engineering, The University of Shiga Prefecture, 2500 Hassaka, Hikone 522-8533, Japan
| | - Ryo Tanaka
- Graduate School of Advanced Science and Engineering, Applied Chemistry Program, Hiroshima University, 1-4-1 Kagamiyama, Higashi-hiroshima 739-8527, Japan
| | - Takeshi Shiono
- Graduate School of Advanced Science and Engineering, Applied Chemistry Program, Hiroshima University, 1-4-1 Kagamiyama, Higashi-hiroshima 739-8527, Japan
| | - Masako Yamada
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Hideki Seto
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Norifumi L Yamada
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Hiroyuki Aoki
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan
| | - Tsukasa Miyazaki
- Office of Society-Academia Collaboration for Innovation, Kyoto University, Sakyou-ku, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Kawashima Y, Tsuji Y. Effects of Curing Agents on the Adhesion of Epoxy Resin to Copper: A Density Functional Theory Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12622-12631. [PMID: 38842114 DOI: 10.1021/acs.langmuir.4c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Epoxy resins are widely used adhesives in industrial fields. To use epoxy resin as an adhesive, it is necessary to mix the epoxy resin with a hardener. Hardeners have various functional groups and skeletons, and the properties of epoxy resins vary depending on the hardener. Although the adhesion of epoxy resins has been extensively studied using density functional theory (DFT) calculations, few studies have evaluated the effect of hardener molecules. Therefore, in this study, DFT calculations of adhesion energies and bonding structures on Cu (111) and Cu2O (111) surfaces are performed for model molecules of adducts of epoxy resin with hardeners having various functional groups and skeletons to evaluate the influence of the hardeners on the adhesion of epoxy resin to the metal surface. The adhesion energy to the Cu (111) surface is governed by the energy due to dispersion forces. Hardeners of the thiol type, which contain relatively heavy sulfur atoms, and hardeners with aromatic rings, displaying high planarity, enable the entire molecule to approach the metal surface, resulting in a relatively high adhesion strength. The calculations for the Cu2O (111) surface show the adhesion strength is more strongly influenced by interactions such as hydrogen bonds between the surface and adhesive molecules than by dispersion forces. Therefore, in adhesion to Cu2O (111), the benzylamine-epoxy adduct with hydrogen bonding and OH-π interactions with the surface, in addition to having a relatively flexible framework, shows a high adhesion strength.
Collapse
Affiliation(s)
- Yuki Kawashima
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Yuta Tsuji
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
- Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| |
Collapse
|
4
|
Yamamoto S, Tsuji Y, Kuwahara R, Yoshizawa K, Tanaka K. Effect of Condensed Water at an Alumina/Epoxy Resin Interface on Curing Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12613-12621. [PMID: 38767655 PMCID: PMC11191686 DOI: 10.1021/acs.langmuir.4c01081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
The adhesion of epoxy adhesives to aluminum materials is an important issue in assembling parts for lightweight mobility. Aluminum surfaces typically possess an oxide layer, which readily adsorbs water. In this study, the aggregation states of water and its effect on the curing reaction were examined by placing a water layer between an amorphous alumina surface and a mixture of epoxy and amine components. This study used molecular dynamics simulations and density functional theory calculations. Before the reaction, water molecules strongly adsorbed onto the alumina surface, aggregating excess water. Some water diffused into the epoxy/amine mixture, accelerating the diffusion of unreacted substances. This led to faster reaction kinetics, particularly in proximity to the alumina surface. The adsorption of water molecules onto the alumina surface and the aggregation of excess water were similarly observed even after the curing process. Subsequently, the interaction between the alumina surface and various functional groups of the epoxy/amine mixture was evaluated before and after the reaction. Epoxy monomers had little interaction with the alumina surface before the reaction, whereas hydroxy groups formed by the ring-opening reaction of epoxy groups exhibited notable interaction. Conversely, sulfonyl and amino groups in amine compounds formed hydrogen bonds with OH groups on the alumina surface before the reaction. However, after the reaction, amino groups weakened their interaction with the alumina OH groups as they transformed from primary to tertiary during the curing reaction. Both epoxy and amine monomers/fragments similarly interacted with water molecules, both before and after the reaction. The insights gained from this study are expected to contribute to a better understanding of the impact of moisture absorption on the application of epoxy resins.
Collapse
Affiliation(s)
- Satoru Yamamoto
- Center
for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Yuta Tsuji
- Faculty
of Engineering Sciences, Kyushu University, Kasuga 816-8580, Japan
| | | | - Kazunari Yoshizawa
- Institute
for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Keiji Tanaka
- Center
for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
- Department
of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
5
|
Uwabe T, Sumiya Y, Tsuji Y, Nakamura S, Yoshizawa K. Elucidating the Effects of Chemisorbed Water Molecules on the Adhesive Interactions of Epoxy Resin to γ-Alumina Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18537-18547. [PMID: 38053394 DOI: 10.1021/acs.langmuir.3c02883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The adhesion mechanism of epoxy resin to the γ-alumina (110) surface was investigated using first-principles density functional theory (DFT). Aluminum materials are lightweight and are used in a wide range of industrial fields. Its surface is oxidized to alumina, and the stable surface is known as the γ-alumina (110) surface. The coverage of hydroxy groups by chemisorbed water molecules on this surface varied depending on the pretreatment temperature. In this study, we investigated the adhesive interactions of epoxy resin on four alumina surfaces with different densities of surface hydroxy groups (0, 3, 6, and 9 OH/nm2) and have discussed their effects. At each interface, the energy curves of the vertically displaced epoxy resin were calculated and the adhesive forces were estimated by differentiating these curves. As the coverage of the surface hydroxy groups increased from 0 to 6 OH/nm2, the adhesive strength gradually decreased. However, the adhesive strength at 9 OH/nm2 was relatively large and almost equal to that at 3 OH/nm2. This inverse volcano-type behavior was analyzed via the decomposition of adhesive forces and the crystal orbital Hamilton population (COHP). The decomposition of adhesive forces into DFT and dispersion components revealed that the inverse volcano-type behavior is derived from the DFT component, and the interfacial interactions owing to the DFT component are accompanied by charge transfer. These were investigated using a COHP analysis, which revealed that this behavior was caused by changes in the activity of the aluminum atoms on the surface and surface reconstruction by chemisorbed water molecules. It is noteworthy that the adhesive strength for 9 OH/nm2 was only 6.9% lower than that for 0 OH/nm2 wherein the chemisorbed water molecules were completely removed from the surface. These results are expected to provide a guideline for the adhesion of epoxy resin to aluminum materials.
Collapse
Affiliation(s)
- Takahiro Uwabe
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Yosuke Sumiya
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Yuta Tsuji
- Faculty of Engineering Sciences, Kyushu University, 6-1, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Shin Nakamura
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Nishi-Ku, Fukuoka 819-0395, Japan
| |
Collapse
|
6
|
Shrestha A, Sumiya Y, Okazawa K, Uwabe T, Yoshizawa K. Molecular Understanding of Adhesion of Epoxy Resin to Graphene and Graphene Oxide Surfaces in Terms of Orbital Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5514-5526. [PMID: 37027214 DOI: 10.1021/acs.langmuir.3c00262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The adhesion mechanism of epoxy resin (ER) cured material consisting of diglycidyl ether of bisphenol A (DGEBA) and 4,4'-diaminodiphenyl sulfone (DDS) to pristine graphene and graphene oxide (GO) surfaces is investigated on the basis of first-principles density functional theory (DFT) with dispersion correction. Graphene is often used as a reinforcing filler incorporated into ER polymer matrices. The adhesion strength is significantly improved by using GO obtained by the oxidation of graphene. The interfacial interactions at the ER/graphene and ER/GO interfaces were analyzed to clarify the origin of this adhesion. The contribution of dispersion interaction to the adhesive stress at the two interfaces is almost identical. In contrast, the DFT energy contribution is found to be more significant at the ER/GO interface. Crystal orbital Hamiltonian population (COHP) analysis suggests the existence of hydrogen bonding (H-bonding) between the hydroxyl, epoxide, amine, and sulfonyl groups of the ER cured with DDS and the hydroxyl groups of the GO surface, in addition to the OH-π interaction between the benzene rings of ER and the hydroxyl groups of the GO surface. The H-bond has a large orbital interaction energy, which is found to contribute significantly to the adhesive strength at the ER/GO interface. The overall interaction at the ER/graphene is much weaker due to antibonding type interactions just below the Fermi level. This finding indicates that only dispersion interaction is significant when ER is adsorbed on the graphene surface.
Collapse
Affiliation(s)
- Amit Shrestha
- Institute for Material Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yosuke Sumiya
- Institute for Material Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazuki Okazawa
- Institute for Material Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahiro Uwabe
- Institute for Material Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Material Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
7
|
Li S, Zhao Y, Wan H, Lin J, Min J. Molecular Understanding of the Interfacial Interaction and Corrosion Resistance between Epoxy Adhesive and Metallic Oxides on Galvanized Steel. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3061. [PMID: 37109896 PMCID: PMC10141672 DOI: 10.3390/ma16083061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
The epoxy adhesive-galvanized steel adhesive structure has been widely used in various industrial fields, but achieving high bonding strength and corrosion resistance is a challenge. This study examined the impact of surface oxides on the interfacial bonding performance of two types of galvanized steel with Zn-Al or Zn-Al-Mg coatings. Scanning electron microscopy and X-ray photoelectron spectroscopy analysis showed that the Zn-Al coating was covered by ZnO and Al2O3, while MgO was additionally found on the Zn-Al-Mg coating. Both coatings exhibited excellent adhesion in dry environments, but after 21 days of water soaking, the Zn-Al-Mg joint demonstrated better corrosion resistance than the Zn-Al joint. Numerical simulations revealed that metallic oxides of ZnO, Al2O3, and MgO had different adsorption preferences for the main components of the adhesive. The adhesion stress at the coating-adhesive interface was mainly due to hydrogen bonds and ionic interactions, and the theoretical adhesion stress of MgO adhesive system was higher than that of ZnO and Al2O3. The corrosion resistance of the Zn-Al-Mg adhesive interface was mainly due to the stronger corrosion resistance of the coating itself, and the lower water-related hydrogen bond content at the MgO adhesive interface. Understanding these bonding mechanisms can lead to the development of improved adhesive-galvanized steel structures with enhanced corrosion resistance.
Collapse
Affiliation(s)
- Shuangshuang Li
- School of Mechanical Engineering, Tongji University, Shanghai 201804, China
| | - Yanliang Zhao
- Baoshan Iron & Steel Co., Ltd., Shanghai 201900, China
| | - Hailang Wan
- School of Mechanical Engineering, Tongji University, Shanghai 201804, China
| | - Jianping Lin
- School of Mechanical Engineering, Tongji University, Shanghai 201804, China
| | - Junying Min
- School of Mechanical Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
8
|
Fritah Z, Drouet C, Salles F, Marsan O, Aufray M. Influence of Water on an Epoxy/Amine-Metal Interphase: A Combined DFT and Mixing Calorimetry Approach. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11342-11352. [PMID: 36800491 DOI: 10.1021/acsami.2c22431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Epoxy-amine systems are ubiquitous in the field of industrial thermosetting polymers, often used in a moist atmosphere. In addition, previous studies showed amine-metal interactions through the formation of an interphase, with the formation of surface complexes that may involve the formation of water molecules. However, to date, the impact of water on an epoxy/amine-metal interphase has not been specifically addressed. In this work, we examined for the first time the role of this potential fourth component by way of a dual experimental/computational approach. The effect of water on the glass-transition temperature of the obtained polymers was quantified. The in situ formation of a DETA-Al-water interphase was followed by mixing calorimetry. The DETA-water interaction was highly exothermic, and the underlying mechanism was discussed on the basis of DETA hydration, which was confirmed by density functional theory (DFT) and Monte Carlo simulations. Taking into account the pre-existing interaction between diethylenetriamine (DETA) molecules allowed us to model all experimental data. Comparison of experimental and calculated IR spectra contributed to validate the simulation parameters used. Our findings indicate that the presence of water may noticeably affect epoxy-amine-based systems. Mixing calorimetry and computational modeling appear as particularly adapted tools for the comprehension of such complex systems.
Collapse
Affiliation(s)
- Zineb Fritah
- CIRIMAT, Université de Toulouse, INP, CNRS, UPS, Ensiacet, Toulouse 31000, France
| | - Christophe Drouet
- CIRIMAT, Université de Toulouse, INP, CNRS, UPS, Ensiacet, Toulouse 31000, France
| | - Fabrice Salles
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier 34000, France
| | - Olivier Marsan
- CIRIMAT, Université de Toulouse, INP, CNRS, UPS, Ensiacet, Toulouse 31000, France
| | - Maëlenn Aufray
- CIRIMAT, Université de Toulouse, INP, CNRS, UPS, Ensiacet, Toulouse 31000, France
| |
Collapse
|
9
|
Wand CR, Gibbon S, Visser P, Siperstein FR. Water-Mediated Epoxy/Surface Adhesion: Understanding the Interphase Region. Chemistry 2022; 28:e202202483. [PMID: 36040291 PMCID: PMC10091763 DOI: 10.1002/chem.202202483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 11/07/2022]
Abstract
Epoxy resins coatings are commonly found in corrosion protection coatings but the presence of water can affect their adhesion to the substrate, often weakening the adhesion of the coating to the solid, reducing its efficiency. Nevertheless, small amounts of water can enhance the epoxy/substrate interactions. In this work, the interphase region of an epoxy precursor and metal oxide substrates is investigated using molecular simulations and it is found that water accumulates between the epoxy layer and the solid substrate. At high water concentrations (9 wt %) the interaction between the epoxy precursor and the solid surface is weakened regardless of the nature of the solid, but at low water concentrations the nature of the solid surface becomes important. For hematite, the presence of water decreases the strength of adhesion but for goethite the presence of a small amount of water (3 wt %) enhances the adhesion to the surface resulting in a densification at the interface.
Collapse
Affiliation(s)
- Charlie R. Wand
- Natural SciencesCollege of EngineeringMathematics and Physical ScienceStreatham CampusUniversity of ExeterNorth Park RoadEX4 4QFExeterUK
- Department of Chemical EngineeringThe University of ManchesterOxford RoadM13 9PLManchesterUK
| | - Simon Gibbon
- Corrosion and Protection CentreSchool of MaterialsThe University of ManchesterOxford RoadM13 9PLManchesterUK
| | - Peter Visser
- AkzoNobelExpertise Center CorrosionRijksstraatweg 312171 AJSassenheimThe Netherlands
| | - Flor R. Siperstein
- Department of Chemical EngineeringThe University of ManchesterOxford RoadM13 9PLManchesterUK
| |
Collapse
|
10
|
Shimokita K, Yamamoto K, Miyata N, Arima-Osonoi H, Nakanishi Y, Takenaka M, Shibata M, Yamada NL, Seto H, Aoki H, Miyazaki T. Neutron Reflectivity Study on the Suppression of Interfacial Water Accumulation between a Polypropylene Thin Film and Si Substrate Using a Silane-Coupling Agent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12457-12465. [PMID: 36194884 DOI: 10.1021/acs.langmuir.2c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We measured the neutron reflectivity (NR) of isotactic polypropylene (PP) thin films deposited on Si substrates modified by hexamethyldisilazane (HMDS) at the saturated vapor pressure of deuterated water at 25 °C and 60 °C/85% RH to investigate the effect of HMDS on the interfacial water accumulation in PP-based polymer/inorganic filler nanocomposites and metal/resin bonding materials. We found that the amount of water accumulated at the PP/Si interface decreased with increasing immersion time of the Si substrate in a solution of HMDS in hexane prior to PP film deposition. During the immersion of the Si substrate, the HMDS molecules were deposited on the Si substrate as a monolayer without aggregation. Furthermore, the coverage of the HMDS monolayer on the Si substrate increased with increasing immersion time. At 60 ° C and 85% RH, only a slight amount of interfacial water was detected after HMDS treatment for 1200 min. As a result, the maximum concentration of interfacial water was reduced to 0.1 from 0.3, where the latter corresponds to the PP film deposited on the untreated substrate.
Collapse
Affiliation(s)
- Keisuke Shimokita
- Functional Base Products Sector, Nitto Denko Corporation, 18 Hirayama, Nakahara, Toyohashi, Aichi441-3194, Japan
- Department of Life Science and Applied Chemistry, Gradual School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya466-8555, Japan
| | - Katsuhiro Yamamoto
- Department of Life Science and Applied Chemistry, Gradual School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya466-8555, Japan
| | - Noboru Miyata
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Ibaraki319-1106, Japan
| | - Hiroshi Arima-Osonoi
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Ibaraki319-1106, Japan
| | - Yohei Nakanishi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto611-0011, Japan
| | - Mikihito Takenaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto611-0011, Japan
| | - Motoki Shibata
- Office of Society-Academia Collaboration for Innovation, Kyoto University, Sakyou-ku, Kyoto606-8501, Japan
| | - Norifumi L Yamada
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Ibaraki319-1106, Japan
| | - Hideki Seto
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Ibaraki319-1106, Japan
| | - Hiroyuki Aoki
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Ibaraki319-1106, Japan
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki319-1195, Japan
| | - Tsukasa Miyazaki
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Ibaraki319-1106, Japan
- Office of Society-Academia Collaboration for Innovation, Kyoto University, Sakyou-ku, Kyoto606-8501, Japan
| |
Collapse
|
11
|
Nakamura S, Yamamoto S, Tsuji Y, Tanaka K, Yoshizawa K. Theoretical Study on the Contribution of Interfacial Functional Groups to the Adhesive Interaction between Epoxy Resins and Aluminum Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6653-6664. [PMID: 35588009 DOI: 10.1021/acs.langmuir.2c00529] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To ensure the quality and reliability of products bonded by epoxy resin adhesives, elucidation of the microscopic adhesion mechanism is essential. The adhesive interaction and bonding strength between epoxy resins and hydroxylated γ-alumina (001) surfaces were investigated by using a combined molecular dynamics (MD) and density functional theory (DFT) study. The curing reaction of an epoxy resin consisting of diglycidyl ether of bisphenol A (DGEBA) and 4,4'-diaminodiphenyl sulfone (DDS) was simulated. The resin structure was divided into fragmentary structures to study the interaction of each functional group with the alumina surface using DFT calculations. From the characteristics of the adhesive structures and the calculated adhesion energies, it was found that the fragments forming hydrogen bonds with hydroxy groups on the alumina surface resulted in large adhesion energies. On the other hand, the fragments adsorbed on the alumina surface via dispersion interactions resulted in small adhesion energies. The adhesion forces evaluated from the Hellmann-Feynman force calculations indicated the significant contribution of the hydroxy groups and benzene ether moieties derived from DGEBA to the adhesive stress of the DGEBA/DDS epoxy resin. The direction of hydrogen bonding between the epoxy resin and the surface and the difference in geometry at the interface between the donor and acceptor of hydrogen bonding played a central role in maintaining the adhesive strength during the failure process of the adhesive interface.
Collapse
Affiliation(s)
- Shin Nakamura
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Satoru Yamamoto
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuta Tsuji
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
- Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Keiji Tanaka
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Nishi-ku, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
12
|
Sumiya Y, Tsuji Y, Yoshizawa K. Peel Adhesion Strength between Epoxy Resin and Hydrated Silica Surfaces: A Density Functional Theory Study. ACS OMEGA 2022; 7:17393-17400. [PMID: 35647424 PMCID: PMC9134379 DOI: 10.1021/acsomega.2c01544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Adhesive strength is known to change significantly depending on the direction of the force applied. In this study, the peel and tensile adhesive forces between the hydroxylated silica (001) surface and epoxy resin are estimated based on quantum chemical calculations. Here, density functional theory (DFT) with dispersion correction is used. In the peel process, the epoxy resin is pulled off from the terminal part, while in the tensile process, the entire epoxy resin is pulled off vertically. As a result of these calculations, the maximum adhesive force in the peel process is decreased to be about 40% of that in the tensile process. The adhesion force-displacement curve for the peeling process shows two characteristic peaks corresponding to the process where the adhesive molecule horizontally oriented to the surface shifts to a vertical orientation to the surface and the process where the vertical adhesive molecule is dissociated from the surface. Force decomposition analysis is performed to further understand the peel adhesion force; the contribution of the dispersion force is found to be slightly larger than that of the DFT force. This feature is common to the tensile process as well. Each force in the peel process is about 40% smaller than the corresponding force in the tensile process.
Collapse
Affiliation(s)
- Yosuke Sumiya
- Institute for Materials Chemistry
and Engineering and IRCCS, Kyushu University, Nishi-Ku, Fukuoka 819-0395, Japan
| | | | - Kazunari Yoshizawa
- Institute for Materials Chemistry
and Engineering and IRCCS, Kyushu University, Nishi-Ku, Fukuoka 819-0395, Japan
| |
Collapse
|
13
|
Sumiya Y, Tsuji Y, Yoshizawa K. Shear adhesive strength between epoxy resin and copper surfaces: a density functional theory study. Phys Chem Chem Phys 2022; 24:27289-27301. [DOI: 10.1039/d2cp03354b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Shear adhesive strengths of epoxy resin for copper and copper oxide surfaces are estimated based on quantum chemical calculations. Shear adhesion has periodicity, and its origin is revealed.
Collapse
Affiliation(s)
- Yosuke Sumiya
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuta Tsuji
- Faculty of Engineering Sciences, Kyushu University, 6-1, Kasuga-koen, Kasuga, Fukuoka, 816-8580, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
14
|
Nakamura S, Tsuji Y, Yoshizawa K. Molecular Dynamics Study on the Thermal Aspects of the Effect of Water Molecules at the Adhesive Interface on an Adhesive Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14724-14732. [PMID: 34870994 DOI: 10.1021/acs.langmuir.1c02653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The presence of adsorbed water on hydrophilic solid surfaces should be taken into account, especially in humid environments. It significantly reduces the adhesive strength between the epoxy resin and the adherend surface. Here, the adhesion structure of interfacial water sandwiched between bisphenol A epoxy resin and a hydroxylated silica (001) surface is investigated with microsecond molecular dynamics simulations. Specifically, interfacial water layers with initial thicknesses of 7.5, 10, and 20 Å are modeled. The density curves of water and the diglycidyl ether of bisphenol A show that at room temperature, the surface of the silica with hydroxyl groups is completely covered with a thick layer of water. For water layers thinner than 10 Å, the density of epoxy resin on the silica surface increases when the system is heated and does not return to the original density when the system is cooled. Furthermore, calculation of the interaction energy revealed that the exclusion of water from the hydroxylated surface by epoxy resin during heating can contribute to the increase in the adhesive interaction between the epoxy resin and the silica surface with hydroxyl groups.
Collapse
Affiliation(s)
- Shin Nakamura
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuta Tsuji
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
15
|
Shimokita K, Yamamoto K, Miyata N, Nakanishi Y, Ogawa H, Takenaka M, Yamada NL, Miyazaki T. Investigation of Interfacial Water Accumulation between Polypropylene Thin Film and Si Substrate by Neutron Reflectivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14550-14557. [PMID: 34865493 DOI: 10.1021/acs.langmuir.1c02771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We performed neutron reflectivity (NR) measurements of isotactic polypropylene (PP) thin films deposited on a Si substrate at the saturated vapor pressure of deuterated water to investigate interfacial water accumulation between the PP and metal surfaces in PP-based polymer/inorganic filler nanocomposites and metal/resin bonding materials. The PP thin films prepared on a Si substrate by a spin-coating technique were adequate as a model system for the PP/metal interface in these materials. A water-rich layer with a maximum water concentration of 0.5, which was considerably higher than those reported in previous studies of organic/inorganic interfaces, was observed within a width of approximately 3 nm at the interface under saturated vapor conditions. This could be attributed to the weak interaction between the PP thin film and the Si substrate. The pathway of moisture transport to the interfacial region was along the interface rather than through the PP film because the hydrophobic PP thin film does not entirely swell with water vapor.
Collapse
Affiliation(s)
- Keisuke Shimokita
- Functional Base Products Sector, Nitto Denko Corporation, 18 Hirayama, Nakahara, Toyohashi, Aichi 441-3194, Japan
- Department of Life Science and Applied Chemistry, Gradual School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Katsuhiro Yamamoto
- Department of Life Science and Applied Chemistry, Gradual School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Noboru Miyata
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Yohei Nakanishi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Hiroki Ogawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Mikihito Takenaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Norifumi L Yamada
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Tsukasa Miyazaki
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| |
Collapse
|
16
|
Tsurumi N, Tsuji Y, Masago N, Yoshizawa K. Elucidation of Adhesive Interaction between the Epoxy Molding Compound and Cu Lead Frames. ACS OMEGA 2021; 6:34173-34184. [PMID: 34926965 PMCID: PMC8675159 DOI: 10.1021/acsomega.1c05914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 05/14/2023]
Abstract
Clarification of adhesive interactions in semiconductor packages can improve reliability of power electronics. In this study, the adhesion interfaces between the epoxy molding compound and Cu-based lead frames were analyzed using the density functional theory. A resin fragment was prepared based on the polymer framework formed in the curing reaction of epoxy cresol novolac (ECN) and phenol novolac (PN), which are typical molding materials. The resin fragment was optimized on the surfaces of Cu and Cu2O. We calculated the charge density differences for adhesion structures and discussed the origin of adhesive interactions. The ECN-PN fragment's adhesion to the Cu surface relied mainly on dispersion forces, whereas in the case of Cu2O, the resin bonded chemically to the surface via (1) σ-bonds formed between the ECN-PN's OH group oxygen and coordinatively unsaturated copper (CuCUS) and (2) hydrogen bonds between resin's OH groups and coordinatively unsaturated oxygen (OCUS) located close to to CuCUS, resulting in a stable adhesive structure. The energy required to detach the resin fragment from the optimized structure was determined using the nudged elastic band method in each model of the adhesive interface. Morse potential curve was used to approximate the obtained energy, and the energy differentiation by detachment distance yielded the theoretical adhesive force. The maximum adhesive stress was 1.6 and 2.2 GPa for the Cu and Cu2O surfaces, respectively. The extent to which the ECN-PN fragment bonded to the Cu2O surface stabilized was 0.5 eV higher than in the case of the Cu surface.
Collapse
Affiliation(s)
- Naoaki Tsurumi
- Research
and Development Center, ROHM Co., Ltd., 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
- Institute
for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuta Tsuji
- Institute
for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Noriyuki Masago
- Research
and Development Center, ROHM Co., Ltd., 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
| | - Kazunari Yoshizawa
- Institute
for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
17
|
Wand CR, Gibbon S, Siperstein FR. Adsorption of Epoxy Oligomers on Iron Oxide Surfaces: The Importance of Surface Treatment and the Role of Entropy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12409-12418. [PMID: 34644491 DOI: 10.1021/acs.langmuir.1c02015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Epoxy-based coatings are widely used in a range of industries as protective coatings. The performance of the final solid-polymer system is dependent on the physicochemical properties of the interface and the interaction between the polymer and the solid substrate. In this study, we perform atomistic molecular dynamics simulations to investigate the binding of a common component in epoxy resins, diglycidyl ether of bisphenol A (DGEBA), on two iron oxide surfaces, hematite (0001) and magnetite (100), and investigate the effect of surface hydroxylation on the binding energy. We show that adsorption of DGEBA on hematite is more favorable than on magnetite and that the adsorbed molecules are highly localized on the pristine hematite surface but mobile on highly hydroxylated hematite surfaces and magnetite surfaces irregardless of surface hydroxylation fraction. A high degree of hydroxylation significantly reduces the binding energy of DGEBA on hematite but not on magnetite. The free-energy calculations confirm the trends observed upon hydroxylation, but the magnitude of the potential of mean force is lower than the binding energy due to the entropic contributions. Therefore, it can be suggested that DGEBA will adsorb more strongly on a surface containing a higher content of hematite than magnetite and that the presence of hydroxyl groups will weaken this adsorption. The presence of hydroxyl groups increases mobility of the chains, which can affect the coating rigidity.
Collapse
Affiliation(s)
- Charlie R Wand
- Department of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Simon Gibbon
- AkzoNobel Research and Development, Northallerton, North Yorkshire DL7 7BJ, U.K
| | - Flor R Siperstein
- Department of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
18
|
Kotb Y, Cagnard A, Houston KR, Khan SA, Hsiao LC, Velev OD. What makes epoxy-phenolic coatings on metals ubiquitous: Surface energetics and molecular adhesion characteristics. J Colloid Interface Sci 2021; 608:634-643. [PMID: 34628322 DOI: 10.1016/j.jcis.2021.09.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/29/2022]
Abstract
HYPOTHESIS Wetting characteristics of epoxy and phenolic resins on metals depend on the molecular interactions between resins' functional groups and metal surface. Those interactions affect the practical adhesion strength of epoxy-phenolic coatings on metals. Estimation of the theoretical adhesion energies can reveal this system's microscopic adhesion mechanisms. EXPERIMENTS Adhesion is estimated theoretically based on resins' wettability on metals, and experimentally through pull-off adhesion testing of cured coatings. The effect of various functional groups on adhesion is decoupled using epoxy and phenolic resins with different functionalities. To assess the impact of the metal passivation on adhesion, tinplated and tin-free steel substrates are used. Differences in their surface chemical composition and polarity are investigated using XPS. FINDINGS Theoretical adhesion results reveal a superior adhesion of epoxy compared to phenolic resins. Moreover, epoxy resins having a higher content of epoxide-to-hydroxyl groups show improved theoretical and practical adhesion. The importance of epoxides in driving resins' initial adhesion on metals is attributed to the formation of direct chemical bonds with active hydrogen on metal surfaces. The adhesion of coatings on tin-free steel is found to be higher than on tinplated steel. This is associated to the increased hydroxyl fraction on tin-free steel surface leading to more hydrogen bonds formation.
Collapse
Affiliation(s)
- Yosra Kotb
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | - Saad A Khan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Lilian C Hsiao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
19
|
Tsuji Y, Baba T, Tsurumi N, Murata H, Masago N, Yoshizawa K. Theoretical Study on the Adhesion Interaction between Epoxy Resin Including Curing Agent and Plated Gold Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3982-3995. [PMID: 33751891 DOI: 10.1021/acs.langmuir.1c00285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this study, the adhesive interaction between gold and epoxy resin is theoretically investigated. These materials make up crucial components of a wide range of electronic devices. The objectives of the study are (1) to elucidate the bonding mechanism between epoxy resin and a realistic gold surface, and (2) to obtain a device-design guideline for superior adhesion, thus reducing the bonding breakage that may potentially cause device failure. Die pad surfaces used in chip attachment methods for microelectronics are usually fabricated using an electrolytic plating technique. This technique involves ionic gold solutions like K[Au(CN)2]. The combined theoretical and experimental studies previously carried out by the authors have revealed that the CN- counteranion of the gold cation has a high affinity for gold and is likely to remain on the realistic gold surface generated by plating. However, the cyano group content on the surface of the plated gold is still unknown. Therefore, gold surfaces embedded with cyano groups with various coverages are constructed. The effect of the varying coverage of the cyano groups on the adhesion strength is inspected using first-principles density functional theory calculations. As the number of cyano groups on the surface increases, the direct interaction between the gold surface and the epoxy resin is hindered, but the hydroxy and amino groups in the epoxy resin and hardener form more hydrogen bonds with the cyano groups adsorbed on the surface. It is found that the surface with intermediate cyano coverage (about 33%) yields the highest adhesive strength.
Collapse
Affiliation(s)
- Yuta Tsuji
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Taiki Baba
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Naoaki Tsurumi
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Research and Development Center, ROHM Co., Ltd., 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
| | - Hiroyuki Murata
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Noriyuki Masago
- Research and Development Center, ROHM Co., Ltd., 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
20
|
Nakamura S, Tsuji Y, Yoshizawa K. Role of Hydrogen-Bonding and OH-π Interactions in the Adhesion of Epoxy Resin on Hydrophilic Surfaces. ACS OMEGA 2020; 5:26211-26219. [PMID: 33073147 PMCID: PMC7557942 DOI: 10.1021/acsomega.0c03798] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/22/2020] [Indexed: 05/14/2023]
Abstract
Epoxy resin adhesives are widely used for joining metal alloys in various industrial fields. To elucidate the adhesion mechanism microscopically, we investigated the interfacial interactions of epoxy resin with hydroxylated silica (0 0 1) and γ-alumina (0 0 1) surfaces using periodic density functional theory calculations as well as density of states (DOS) and crystal orbital Hamilton population (COHP) analyses. To better understand the interfacial interactions, we employed and analyzed water and benzene molecules as hydrophilic and hydrophobic adsorbates, respectively. Structural features and calculated adhesion energies reveal that these small adsorbates have a higher affinity for the γ-alumina surface than that for the silica surface, while a fragmentary model for the epoxy resin exhibits a strong interaction with the silica surface. This discrepancy suggests that the structural features of the hydroxylated silica surface dictate its affinity to a specific species. Partial DOS and COHP curves provide evidence for the presence of OH-π interactions between the OH groups on the surfaces and the benzene rings of the epoxy resin fragments. The orbital interaction energies of the H-bonding and OH-π interactions evaluated from the integrated COHP indicate that the OH-π interaction is a nonnegligible origin of the adhesion interaction, even when polymers with hydrophobic benzene rings are adsorbed on hydroxylated surfaces.
Collapse
|
21
|
Water in confinement of epoxy layer and hydroxylated (001) γ-alumina: An atomistic simulation view. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|