1
|
Tabacchi G, Armenia I, Bernardini G, Masciocchi N, Guagliardi A, Fois E. Energy Transfer from Magnetic Iron Oxide Nanoparticles: Implications for Magnetic Hyperthermia. ACS APPLIED NANO MATERIALS 2023; 6:12914-12921. [PMID: 37533540 PMCID: PMC10391739 DOI: 10.1021/acsanm.3c01643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/05/2023] [Indexed: 08/04/2023]
Abstract
Magnetic iron oxide nanoparticles (IONPs) have gained momentum in the field of biomedical applications. They can be remotely heated via alternating magnetic fields, and such heat can be transferred from the IONPs to the local environment. However, the microscopic mechanism of heat transfer is still debated. By X-ray total scattering experiments and first-principles simulations, we show how such heat transfer can occur. After establishing structural and microstructural properties of the maghemite phase of the IONPs, we built a maghemite model functionalized with aminoalkoxysilane, a molecule used to anchor (bio)molecules to oxide surfaces. By a linear response theory approach, we reveal that a resonance mechanism is responsible for the heat transfer from the IONPs to the surroundings. Heat transfer occurs not only via covalent linkages with the IONP but also through the solvent hydrogen-bond network. This result may pave the way to exploit the directional control of the heat flow from the IONPs to the anchored molecules-i.e., antibiotics, therapeutics, and enzymes-for their activation or release in a broader range of medical and industrial applications.
Collapse
Affiliation(s)
- Gloria Tabacchi
- Dipartimento
di Scienza e Alta Tecnologia (DSAT), University
of Insubria, and INSTM, Via Valleggio 11, I-22100 Como, Italy
| | - Ilaria Armenia
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Giovanni Bernardini
- Dipartimento
di Biotecnologie e Scienze della Vita (DBSV), University of Insubria, Via Dunant 3, I-21100 Varese, Italy
| | - Norberto Masciocchi
- Dipartimento
di Scienza e Alta Tecnologia (DSAT), University
of Insubria, and INSTM, Via Valleggio 11, I-22100 Como, Italy
| | - Antonietta Guagliardi
- Istituto
di Cristallografia − To.Sca.Lab and INSTM, CNR, Via Valleggio 11, I-22100 Como, Italy
| | - Ettore Fois
- Dipartimento
di Scienza e Alta Tecnologia (DSAT), University
of Insubria, and INSTM, Via Valleggio 11, I-22100 Como, Italy
| |
Collapse
|
2
|
Hu X, Park JE, Kang S, Kim CJ, Kim Y, Hyun JK, Park SJ. Free-standing two-dimensional sheets of polymer-linked nanoparticles. NANOSCALE 2022; 14:12849-12855. [PMID: 36039954 DOI: 10.1039/d2nr03375e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Here, we report a simple and general approach to fabricate free-standing two-dimensional (2D) sheets of nanoparticles by the simultaneous self-assembly of hydrophobic nanoparticles and hydrophilic polymers at the liquid-liquid interface. The nanoparticle-polymer interaction at the interface generates well-defined 2D sheets of densely packed nanoparticles with a lateral dimension of tens of micrometers. The nanosheets transferred in water are stable over months without any additional cross-linking step. The method is applicable for a broad range of nanoparticles including oxide, semiconductor, and metal nanoparticles as well as functional polymers.
Collapse
Affiliation(s)
- Xiaole Hu
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.
| | - Ji-Eun Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.
| | - Seulki Kang
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.
| | - Chan-Jin Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.
| | - Youngji Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.
| | - Jerome Kartham Hyun
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.
| |
Collapse
|
3
|
Mourdikoudis S, Kostopoulou A, LaGrow AP. Magnetic Nanoparticle Composites: Synergistic Effects and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004951. [PMID: 34194936 PMCID: PMC8224446 DOI: 10.1002/advs.202004951] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 05/17/2023]
Abstract
Composite materials are made from two or more constituent materials with distinct physical or chemical properties that, when combined, produce a material with characteristics which are at least to some degree different from its individual components. Nanocomposite materials are composed of different materials of which at least one has nanoscale dimensions. Common types of nanocomposites consist of a combination of two different elements, with a nanoparticle that is linked to, or surrounded by, another organic or inorganic material, for example in a core-shell or heterostructure configuration. A general family of nanoparticle composites concerns the coating of a nanoscale material by a polymer, SiO2 or carbon. Other materials, such as graphene or graphene oxide (GO), are used as supports forming composites when nanoscale materials are deposited onto them. In this Review we focus on magnetic nanocomposites, describing their synthetic methods, physical properties and applications. Several types of nanocomposites are presented, according to their composition, morphology or surface functionalization. Their applications are largely due to the synergistic effects that appear thanks to the co-existence of two different materials and to their interface, resulting in properties often better than those of their single-phase components. Applications discussed concern magnetically separable catalysts, water treatment, diagnostics-sensing and biomedicine.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- Biophysics GroupDepartment of Physics and AstronomyUniversity College LondonLondonWC1E 6BTUK
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories21 Albemarle StreetLondonW1S 4BSUK
| | - Athanasia Kostopoulou
- Institute of Electronic Structure and Laser (IESL)Foundation for Research and Technology‐Hellas (FORTH)100 Nikolaou PlastiraHeraklionCrete70013Greece
| | - Alec P. LaGrow
- International Iberian Nanotechnology LaboratoryBraga4715‐330Portugal
| |
Collapse
|
4
|
Medidhi KR, Padmanabhan V. Viscosity of polyelectrolyte-grafted nanoparticle solutions. SOFT MATTER 2021; 17:3455-3462. [PMID: 33650625 DOI: 10.1039/d0sm02142c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The effect of charges and hydrogen bonding on viscosity in solutions containing polyelectrolyte-grafted nanoparticles (PENP) has been investigated using molecular dynamics (MD) simulations. The electrostatic interaction between the charged monomers on the grafted chains, which increases with the degree of ionization, causes the grafted polymers to stretch and increases the hydrodynamic size of the nanoparticles. The viscosity of the solution is partially governed by the balance between the entanglement of grafted chains and the electrostatic repulsion. Moreover, the charge-assisted hydrogen bonds between the monomers of different particles further enhance the viscosity of the solution. For shorter grafted chains, a majority of hydrogen bonds are formed within the same particle and thus show no significant enhancement in viscosity. The addition of polymer chains with hydrogen bonding sites has been shown to bridge multiple nanoparticles, creating a network structure, that increases viscosity. The chain stiffness has been shown to have a direct correlation with bridging and thus the viscosity of the solution.
Collapse
Affiliation(s)
- Koteswara Rao Medidhi
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, Tennessee 38501, USA.
| | | |
Collapse
|
5
|
Abstract
The preparation and applications of DNA containing polymers are comprehensively reviewed, and they are in the form of DNA−polymer covalent conjugators, supramolecular assemblies and hydrogels for advanced materials with promising features.
Collapse
Affiliation(s)
- Zeqi Min
- School of Materials Science & Engineering
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| | - Biyi Xu
- School of Materials Science & Engineering
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| | - Wen Li
- School of Materials Science & Engineering
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| | - Afang Zhang
- School of Materials Science & Engineering
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
6
|
Natarajan P, Tomich JM. Understanding the influence of experimental factors on bio-interactions of nanoparticles: Towards improving correlation between in vitro and in vivo studies. Arch Biochem Biophys 2020; 694:108592. [PMID: 32971033 PMCID: PMC7503072 DOI: 10.1016/j.abb.2020.108592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
Bionanotechnology has developed rapidly over the past two decades, owing to the extensive and versatile, functionalities and applicability of nanoparticles (NPs). Fifty-one nanomedicines have been approved by FDA since 1995, out of the many NPs based formulations developed to date. The general conformation of NPs consists of a core with ligands coating their surface, that stabilizes them and provides them with added functionalities. The physicochemical properties, especially the surface composition of NPs influence their bio-interactions to a large extent. This review discusses recent studies that help understand the nano-bio interactions of iron oxide and gold NPs with different surface compositions. We discuss the influence of the experimental factors on the outcome of the studies and, thus, the importance of standardization in the field of nanotechnology. Recent studies suggest that with careful selection of experimental parameters, it is possible to improve the positive correlation between in vitro and in vivo studies. This provides a fundamental understanding of the NPs which helps in assessing their potential toxic side effects and may aid in manipulating them further to improve their biocompatibility and biosafety.
Collapse
|
7
|
Zhang C, Yang S, Padmanabhan V, Akcora P. Solution Rheology of Poly(acrylic acid)-Grafted Silica Nanoparticles. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chongfeng Zhang
- Department of Chemical Engineering & Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Siyang Yang
- Department of Chemical Engineering & Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Venkat Padmanabhan
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| | - Pinar Akcora
- Department of Chemical Engineering & Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| |
Collapse
|