1
|
Abbas AH, Kubasheva A, Rustem B, Sapargaliyev Z. Synergy of the flow behaviour and disperse phase of polysaccharide nanoparticles derived from Corchorus olitorius in enhancing oil recovery at an offshore operation. Int J Biol Macromol 2025; 294:139375. [PMID: 39755322 DOI: 10.1016/j.ijbiomac.2024.139375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/18/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
The escalating global energy demand necessitates enhanced oil recovery methods, particularly offshore. Biological nanotechnology offers sustainable, environment-friendly, and cost-effective alternatives to synthetic chemicals. This study explored the synthesis of polysaccharide-based nanoparticles (PNPs) from Corchorus olitorius leaves using a weak acid-assisted ultrasonic method and their application as nanocomposites for oil recovery. The PNPs were characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, zeta potential, and 1H NMR analyses. Performance assessments included rheological properties under varying temperatures and shear rates, interfacial tension (IFT) via the pendant-drop method, and core flooding to evaluate the oil recovery. The weak acid-assisted ultrasonic method produced PNPs with sizes ranging from 35 to 175 nm, exhibiting stable hydrophilic and hydrophobic properties. Rheological tests showed viscosity dependence on PNP concentration, with viscosity decreasing as the temperature increased. Salinity amplified the viscosity at higher PNP concentrations (>1.5 wt%). The PNPs enhanced the nanocomposite stability by reducing the consistency index, increasing the flow behaviour index, and minimising shear thinning. The PNP fluid improved oil recovery by 3.77 %, achieving a total recovery of 60.30 %. Combining PNPs with mucilage further increased recovery by 18 %, resulting in a total recovery of 75.52 %. The cost-effectiveness of PNP production makes it a viable solution for large-scale oil-recovery applications.
Collapse
Affiliation(s)
- Azza Hashim Abbas
- Institute of Geoenergy Engineering, Heriot-Watt University, Edinburgh EH14 4AS, UK; Department of Petroleum Engineering, School of Mining and Geosciences, Nazarbayev University, Astana 010000, Kazakhstan.
| | - Ayazhan Kubasheva
- Department of Chemical Engineering, School of Engineering and Digital Science, Nazarbayev University, Astana 010000, Kazakhstan
| | - Bakdaulet Rustem
- Department of Petroleum Engineering, School of Mining and Geosciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Zhandarbek Sapargaliyev
- Department of Chemical Engineering, School of Engineering and Digital Science, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
2
|
Shakeel M, Sagandykova D, Mukhtarov A, Dauyltayeva A, Maratbekkyzy L, Pourafshary P, Musharova D. Maximizing oil recovery: Innovative chemical EOR solutions for residual oil mobilization in Kazakhstan's waterflooded sandstone oilfield. Heliyon 2024; 10:e28915. [PMID: 38586411 PMCID: PMC10998114 DOI: 10.1016/j.heliyon.2024.e28915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
The results of an experimental study to design a chemical flood scheme for a massive Kazakhstani oilfield with high water cut are presented in this paper. A meticulously formulated chemical flooding procedure entails injecting a blend comprising interfacial tension (IFT) reducing agents, alkaline/nanoparticles to control chemical adsorption, and polymer to facilitate mobility control. Overall, this well-conceived approach leads to a significant enhancement in the mobilization and production of residual oil. Experiments were conducted in Kazakhstan's Field A, one of the country's oldest oilfields with over 90% water cut and substantial remaining oil, to assess the efficiency of various hydrolyzed polyacrylamide (HPAM) derived polymers and surfactant solutions. Additionally, the effectiveness of alkaline and nanoparticles in minimizing chemical adsorption for the screened surfactant and polymer was investigated. These assessments were conducted under reservoir conditions, with a temperature of 63 °C, and using 13,000 ppm Caspian seawater as makeup brine. The performance assessment of the selected chemicals was carried out through a set of oil displacement tests on reservoir cores. Critical parameters, including chemical adsorption, interfacial tension, resistance factor, and oil recovery factor, were compared to determine the most effective chemical flooding approach for Field A. Both the surfactant-polymer (SP) and alkali-surfactant-polymer (ASP) approaches were more successful in recovering residual oil by efficiently generating and delivering microemulsion, producing more than 90% of the remaining oil after waterflooding. Due to the low increase in recovery compared to SP and the complexity of applying ASP at the field scale, SP was recommended for the pilot test studies. This investigation underscores that the choice of chemicals is contingent upon the interplay between the specific characteristics of the oil, the geological formation, the injection water, and the reservoir rock. Consequently, assessing all potential configurations on reservoir cores is imperative to identify the most optimal chemical combination. The practical challenges at the field scale should also be considered for the final decision. The results of this study contribute to the successful design and implementation of tailored chemical flooding to challenging oilfields with excessive water cut and high residual oil.
Collapse
Affiliation(s)
- Mariam Shakeel
- School of Mining and Geosciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Dilyara Sagandykova
- School of Mining and Geosciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Aibek Mukhtarov
- School of Mining and Geosciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Amina Dauyltayeva
- School of Mining and Geosciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Laila Maratbekkyzy
- School of Mining and Geosciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Peyman Pourafshary
- School of Mining and Geosciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | | |
Collapse
|
3
|
Combes A, Rieb C, Haye L, Klymchenko AS, Serra CA, Reisch A. Mixing versus Polymer Chemistry in the Synthesis of Loaded Polymer Nanoparticles through Nanoprecipitation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16532-16542. [PMID: 37955543 DOI: 10.1021/acs.langmuir.3c02468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Polymer nanoparticles (NPs) loaded with drugs and contrast agents have become key tools in the advancement of nanomedicine, requiring robust technologies for their synthesis. Nanoprecipitation is a particularly interesting technique for the assembly of loaded polymer NPs, which is well-known to proceed under kinetic control, with a strong influence of the assembly conditions. On the other hand, the nature of the used polymer also influences the outcome of nanoprecipitation. Here, we investigated systematically the relative effects of mixing of the organic and aqueous phases and polymer chemistry on the formation of polymer nanocarriers. For this, two mixing schemes, manual mixing and microfluidic mixing using an impact-jet micromixer, were first evaluated, showing mixing times of several tens of milliseconds and a few milliseconds, respectively. Copolymers of ethyl methacrylate with charged and hydrophilic groups and different polyesters (poly(d-l-lactide-co-glycolide) and poly(lactic acid)) were combined with a fluorescent dye salt and tested for particle assembly using these "slow" and "fast" mixing methods. Our results showed that in the case of the most hydrophobic polymers, the speed of mixing had no significant influence on the size and loading of the formed NPs. In contrast, in the case of less hydrophobic polymers, faster mixing led to smaller NPs with better encapsulation. The switch between mixing and polymer-controlled assembly was directly correlated to the solubility limit of the polymers in acetonitrile-water mixtures, with a critical point for solubility limits between 15 and 20 vol % of water. Our results provide simple guidelines on how to evaluate the possible influence of polymer chemistry and mixing on the formation of loaded NPs, opening the way to fine-tune their properties and optimize their large-scale production.
Collapse
Affiliation(s)
- Antoine Combes
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies UMR 7021, Strasbourg F-67000, France
| | - Corentin Rieb
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies UMR 7021, Strasbourg F-67000, France
| | - Lucie Haye
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies UMR 7021, Strasbourg F-67000, France
| | - Andrey S Klymchenko
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies UMR 7021, Strasbourg F-67000, France
| | - Christophe A Serra
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, Strasbourg F-67000, France
| | - Andreas Reisch
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies UMR 7021, Strasbourg F-67000, France
- Université de Strasbourg, INSERM, Biomatériaux et Bioingénierie, UMR_S 1121, Strasbourg F-67000, France
| |
Collapse
|
4
|
Synergistic effect of lecithin and alginate, CMC, or PVP in stabilizing curcumin and its potential mechanism. Food Chem 2023; 413:135634. [PMID: 36780858 DOI: 10.1016/j.foodchem.2023.135634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/05/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
This work aims to advance the understanding of the synergistic mechanism of lecithin and polymers (alginate, CMC, and PVP) in stabilizing curcumin, with a major focus on understanding the nanocomplex formation process and the main binding energy between molecules. It is demonstrated that lecithin and polymers have a synergistic effect in increasing the thermal acid, light, and digestion stability of curcumin. The potential mechanism is that the hydrophobic parts of curcumin molecules are first anchored at the region of the hydrophobic cavity of lecithin by van der Waals, while the hydrophilic parts are outward and are further encapsulated by hydrophilic polymers by van der Waals and electrostatic interaction to form a protective shell. This study contributes to our understanding of the synergistic mechanism of lecithin, polymers, and hydrophobic compounds, which can promote the synergistic use of lecithin and polymers to prepare nanocomplexes as an important tool for delivering bioactive compounds.
Collapse
|
5
|
Nourabi A, Tabibiazar M, Mashhadi H, Mahmoudzadeh M. Characterization of pickering emulsion stabilized by colloidal sodium caseinate nanoparticles prepared using complexation and antisolvent method. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Javan Nikkhah S, Sammalkorpi M. Single core and multicore aggregates from a polymer mixture: A dissipative particle dynamics study. J Colloid Interface Sci 2023; 635:231-241. [PMID: 36587575 DOI: 10.1016/j.jcis.2022.12.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/04/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
HYPOTHESIS Multicore block copolymer aggregates correspond to self-assembly such that the polymer system spontaneously phase separates to multiple, droplet-like cores differing in the composition from the polymer surroundings. Such multiple core aggregates are highly useful capsules for different applications, e.g., drug transport, catalysis, controlled solvation, and chemical reactions platforms. We postulate that polymer system composition provides a direct means for designing polymer systems that self-assemble to such morphologies and controlling the assembly response. SIMULATIONS Using dissipative particle dynamics (DPD) simulations, we examine the self-assembly of a mixture of highly and weakly solvophobic homopolymers and an amphiphilic block copolymer in the presence of solvent. We map the multicore vs single core (core-shell particles) assembly response and aggregate structure in terms of block copolymer concentration, polymer component ratios, and chain length of the weakly solvophobic homopolymer. FINDINGS For fixed components and polymer chemistries, the amount of block copolymer is the key to controlling single core vs multicore aggregation. We find a polymer system dependent critical copolymer concentration for the multicore aggregation and that a minimum level of incompatibility between the solvent and the weakly solvophobic component is required for multicore assembly. We discuss the implications for polymer system design for multicore assemblies. In summary, the study presents guidelines to produce multicore aggregates and to tune the assembly from multicore aggregation to single core core-shell particles.
Collapse
Affiliation(s)
- Sousa Javan Nikkhah
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Department of Physics, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland; Department of Chemical Sciences, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland.
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| |
Collapse
|
7
|
Scott DM, Prud'homme RK, Priestley RD. Effects of the polymer glass transition on the stability of nanoparticle dispersions. SOFT MATTER 2023; 19:1212-1218. [PMID: 36661133 DOI: 10.1039/d2sm01595a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In addition to the repulsive and attractive interaction forces described by Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, many charged colloid systems are stabilized by non-DLVO contributions stemming from specific material attributes. Here, we investigate non-DLVO contributions to the stability of polymer colloids stemming from the intra-particle glass transition temperature (Tg). Flash nanoprecipitation is used to fabricate nanoparticles (NPs) from a library of polymers and dispersion stability is studied in the presence of both hydrophilic and hydrophobic salts. When adding KCl, stability undergoes a discontinuous decrease as Tg increases above room temperature, indicating greater stability of rubbery NPs over glassy NPs. Glassy NPs are also found to interact strongly with hydrophobic phosphonium cations (PR4+), yielding charge inversion and intermediate aggregation while rubbery NPs resist ion adsorption. Differences in the lifetime of ionic structuration within mobile surface layers is presented as a potential mechanism underlying the observed phenomenon.
Collapse
Affiliation(s)
- Douglas M Scott
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Rodney D Priestley
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
8
|
Scott DM, Nikoubashman A, Register RA, Priestley RD, Prud'homme RK. Rapid Precipitation of Ionomers for Stabilization of Polymeric Colloids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:570-578. [PMID: 36577027 DOI: 10.1021/acs.langmuir.2c02850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Polymeric colloids have shown potential as "building blocks" in applications ranging from formulations of Pickering emulsions and drug delivery systems to advanced materials, including colloidal crystals and composites. However, for applications requiring tunable properties of charged colloids, obstacles in fabrication can arise through limitations in process scalability and chemical versatility. In this work, the capabilities of flash nanoprecipitation (FNP), a scalable nanoparticle (NP) fabrication technology, are expanded to produce charged polystyrene colloids using sulfonated polystyrene ionomers as a new class of NP stabilizers. Through experimental exploration of formulation parameters, increases in the ionomer content are shown to reduce the particle size, mitigating a significant trade-off between the final particle size and inlet concentration; thus, expanding the processable material throughput of FNP. Further, the degree of sulfonation is found to impact stabilization with optimal performance achieved by selecting ionomers with intermediate (2.45-5.2 mol %) sulfonation. Simulations of single ionomer chains and their arrangement in multicomponent NPs provide molecular insights into the assembly and structure of NPs wherein the partitioning of ionomers to the particle surface depends on the polymer molecular weight and degree of sulfonation. By combining the insights from simulations with diffusion-limited growth kinetics and parametric fits to experimental data, a simple design formulation relation is proposed and validated. This work highlights the potential of ionomer-based stabilizers for controllably producing charged NP dispersions in a scalable manner.
Collapse
Affiliation(s)
- Douglas M Scott
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey08544, United States
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, Mainz55128, Germany
| | - Richard A Register
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey08544, United States
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey08544, United States
| | - Rodney D Priestley
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey08544, United States
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey08544, United States
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey08544, United States
| |
Collapse
|
9
|
Chen H, Celik AE, Mutschler A, Combes A, Runser A, Klymchenko AS, Lecommandoux S, Serra CA, Reisch A. Assembly of Fluorescent Polymer Nanoparticles Using Different Microfluidic Mixers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7945-7955. [PMID: 35731957 DOI: 10.1021/acs.langmuir.2c00534] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoprecipitation is a facile and efficient approach to the assembly of loaded polymer nanoparticles (NPs) for applications in bioimaging and targeted drug delivery. Their successful use in clinics requires reproducible and scalable synthesis, for which microfluidics appears as an attractive technique. However, in the case of nanoprecipitation, particle formation depends strongly on mixing. Here, we compare 5 different types of microfluidic mixers with respect to the formation and properties of poly(d-l-lactide-co-glycolide) (PLGA) and poly(methyl methacrylate) NPs loaded with a fluorescent dye salt: a cross-shaped mixer, a multilamination mixer, a split and recombine mixer, two herringbone mixers, and two impact jet mixers. Size and fluorescence properties of the NPs obtained with these mixers are evaluated. All mixers, except the cross-shaped one, yield NPs at least as small and fluorescent as those obtained manually. Notably in the case of impact jet mixers operated at high flow speeds, the size of the NPs could be strongly reduced from >50 nm down to <20 nm. Surprisingly, the fluorescence quantum yield of NPs obtained with these mixers also depends strongly on the flow speed, increasing, in the case of PLGA, from 30 to >70%. These results show the importance of precisely controlling the assembly conditions for loaded polymer NPs. The present work further provides guidance for choosing the optimal microfluidic setup for production of nanomaterials for biomedical applications.
Collapse
Affiliation(s)
- Huaiyou Chen
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies, UMR 7021, Strasbourg F-67000, France
| | - Ali Emre Celik
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies, UMR 7021, Strasbourg F-67000, France
| | - Angela Mutschler
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France
| | - Antoine Combes
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies, UMR 7021, Strasbourg F-67000, France
| | - Anne Runser
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies, UMR 7021, Strasbourg F-67000, France
| | - Andrey S Klymchenko
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies, UMR 7021, Strasbourg F-67000, France
| | | | - Christophe A Serra
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR 22, Strasbourg F-67000, France
| | - Andreas Reisch
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies, UMR 7021, Strasbourg F-67000, France
| |
Collapse
|
10
|
Stability Phenomena Associated with the Development of Polymer-Based Nanopesticides. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5766199. [PMID: 35509832 PMCID: PMC9060970 DOI: 10.1155/2022/5766199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/14/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022]
Abstract
Pesticides have been used in agricultural activity for decades because they represent the first defense against pathogens, harmful insects, and parasitic weeds. Conventional pesticides are commonly employed at high dosages to prevent their loss and degradation, guaranteeing effectiveness; however, this results in a large waste of resources and significant environmental pollution. In this regard, the search for biocompatible, biodegradable, and responsive materials has received greater attention in the last years to achieve the obtention of an efficient and green pesticide formulation. Nanotechnology is a useful tool to design and develop “nanopesticides” that limit pest degradation and ensure a controlled release using a lower concentration than the conventional methods. Besides different types of nanoparticles, polymeric nanocarriers represent the most promising group of nanomaterials to improve the agrochemicals’ sustainability due to polymers’ intrinsic properties. Polymeric nanoparticles are biocompatible, biodegradable, and suitable for chemical surface modification, making them attractive for pesticide delivery. This review summarizes the current use of synthetic and natural polymer-based nanopesticides, discussing their characteristics and their most common design shapes. Furthermore, we approached the instability phenomena in polymer-based nanopesticides and strategies to avoid it. Finally, we discussed the environmental risks and future challenges of polymeric nanopesticides to present a comprehensive analysis of this type of nanosystem.
Collapse
|
11
|
O’Connell R, Sharratt WN, Aelmans NJJ, Higgins JS, Cabral JT. SANS Study of PPPO in Mixed Solvents and Impact on Polymer Nanoprecipitation. Macromolecules 2022; 55:1050-1059. [PMID: 35431332 PMCID: PMC9007525 DOI: 10.1021/acs.macromol.1c02030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/03/2022] [Indexed: 11/29/2022]
Abstract
We investigate the conformation of poly(2,6-diphenyl-p-phenylene oxide) (PPPO) in good and mixed solvents by small-angle neutron scattering (SANS) across its ternary phase diagram. Dichloromethane was selected as a "good" solvent and heptane as a "poor" solvent whose addition eventually induces demixing and polymer precipitation. Below the overlap concentration c*, the polymer conformation is found to be well described by the polymer-excluded volume model and above by the Ornstein-Zernike expression with a correlation length ξ which depends on the concentration and solvent/nonsolvent ratio. We quantify the decrease in polymer radius of gyration R g , increase in ξ, and effective χ parameter approaching the phase boundary. Upon flash nanoprecipitation, the characteristic particle radius (estimated by scanning electron microscopy, SEM) is found to scale with polymer concentration as well as with nonsolvent content. Significantly, the solution volume per precipitated particle remains nearly constant at all polymer concentrations. Overall, our findings correlate ternary solution structure with the fabrication of polymer nanoparticles by nonsolvent-induced phase separation and precipitation.
Collapse
Affiliation(s)
- Róisín
A. O’Connell
- Department
of Chemical Engineering, Imperial College
London, South Kensington, London SW7 2AZ, United Kingdom
| | - William N. Sharratt
- Department
of Chemical Engineering, Imperial College
London, South Kensington, London SW7 2AZ, United Kingdom
| | | | - Julia S. Higgins
- Department
of Chemical Engineering, Imperial College
London, South Kensington, London SW7 2AZ, United Kingdom
| | - João T. Cabral
- Department
of Chemical Engineering, Imperial College
London, South Kensington, London SW7 2AZ, United Kingdom
| |
Collapse
|
12
|
Tran E, Richmond GL. Interfacial Steric and Molecular Bonding Effects Contributing to the Stability of Neutrally Charged Nanoemulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12643-12653. [PMID: 34662126 DOI: 10.1021/acs.langmuir.1c02020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In cosmetic, pharmaceutical, and food applications, many active ingredients have limited bioavailability in an aqueous environment, and in that context, nanoemulsions provide a mechanism for encapsulation, protection, and transport. These dispersed oil droplets are on the order of 100s of nanometers in diameter and owe their long-term stability to emulsifiers that are commonly charged. More recently, applications have been utilizing nonionic species as stabilizing agents due to their enhanced biosafety. DLVO (named after Derjaguin, Landau, Verwey, and Overbeek) theory has been central in the description of colloid stability, which emphasizes repulsive electrostatic forces, while extended DLVO theory also accounts for steric effects. Past studies of nanoemulsions have largely employed charged surfactants and polyelectrolytes, making it difficult to decouple electrostatic and steric effects as they relate to droplet stability. To better understand steric and molecular factors contributing to the stability of "uncharged" droplets, we have created nanoemulsions with sodium dodecyl sulfate (SDS) and poly(N-vinylacetamide) (PNVA). Though SDS is anionic, with PNVA coating the droplet surfaces, the ζ-potentials of these nanoemulsions are ∼0 mV. Despite minimizing electrostatic contributions, these nanoemulsions are stable for upward of a month with interesting dynamics. By employing dynamic light scattering, vibrational sum frequency scattering spectroscopy, and calculating interaction pair potentials using extended DLVO theory, we learn that the thickness of the PNVA layer plays a critical role in stabilizing these "uncharged" nanoemulsions. Beyond the sterics, the molecular conformation of the PNVA strands also contributes to the droplet stability. The adsorbed PNVA strands are shown to form stratified, rigid polymer networks that prevent the nanoemulsions from rapid destabilization.
Collapse
Affiliation(s)
- Emma Tran
- University of Oregon, Eugene, Oregon 97403, United States
| | | |
Collapse
|
13
|
Protein-like particles through nanoprecipitation of mixtures of polymers of opposite charge. J Colloid Interface Sci 2021; 607:1786-1795. [PMID: 34600342 DOI: 10.1016/j.jcis.2021.09.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022]
Abstract
HYPOTHESIS Polymer nanoparticles (NPs) have a very high potential for applications notably in the biomedical field. However, synthetic polymer NPs cannot yet concurrence the functionalities of proteins, their natural counterparts, notably in terms of size, control over internal structure and interactions with biological environments. We hypothesize that kinetic trapping of polymers bearing oppositely charged groups in NPs could bring a new level of control and allow mimicking the surfaces of proteins. EXPERIMENTS Here, the assembly of mixed-charge polymer NPs through nanoprecipitation of mixtures of oppositely charged polymers is studied. Two series of copolymers made of ethyl methacrylate and 1 to 25 mol% of either methacrylic acid or a trimethylammonium bearing methacrylate are synthesized. These carboxylic acid or trimethylammonium bearing polymers are then mixed in different ratios and nanoprecipitated. The influence of the charge fraction, mixing ratio of the polymers, and precipitation conditions on NP size and surface charge is studied. FINDINGS Using this approach, NPs of less than 25 nm with tunable surface charge from +40 mV to -40 mV are assembled. The resulting NPs are sensitive to pH and certain NP formulations have an isoelectric point allowing repeated charge reversal. Encapsulation of fluorescent dyes yields very bright fluorescent NPs, whose interactions with cells are studied through fluorescence microscopy. The obtained results show the potential of nanoprecipitation of oppositely charged polymers for the design of NPs with precisely tuned surface properties.
Collapse
|
14
|
Liu J, Bizmark N, Scott DM, Register RA, Haataja MP, Datta SS, Arnold CB, Priestley RD. Evolution of Polymer Colloid Structure During Precipitation and Phase Separation. JACS AU 2021; 1:936-944. [PMID: 34467340 PMCID: PMC8395639 DOI: 10.1021/jacsau.1c00110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 05/23/2023]
Abstract
Polymer colloids arise in a variety of contexts ranging from synthetic to natural systems. The structure of polymeric colloids is crucial to their function and application. Hence, understanding the mechanism of structure formation in polymer colloids is important to enabling advances in their production and subsequent use as enabling materials in new technologies. Here, we demonstrate how the specific pathway from precipitation to vitrification dictates the resulting morphology of colloids fabricated from polymer blends. Through continuum simulations, free energy calculations, and experiments, we reveal how colloid structure changes with the trajectory taken through the phase diagram. We demonstrate that during solvent exchange, polymer-solvent phase separation of a homogeneous condensate can precede polymer-polymer phase separation for blends of polymers that possess some degree of miscibility. For less-miscible, higher-molecular-weight blends, phase separation and kinetic arrest compete to determine the final morphology. Such an understanding of the pathways from precipitation to vitrification is critical to designing functional structured polymer colloids.
Collapse
Affiliation(s)
- Jason
X. Liu
- Department
of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08540, United States
| | - Navid Bizmark
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08540, United States
- Princeton
Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08540, United States
| | - Douglas M. Scott
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08540, United States
| | - Richard A. Register
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08540, United States
- Princeton
Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08540, United States
| | - Mikko P. Haataja
- Department
of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08540, United States
- Princeton
Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08540, United States
| | - Sujit S. Datta
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08540, United States
- Princeton
Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08540, United States
| | - Craig B. Arnold
- Department
of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08540, United States
- Princeton
Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08540, United States
| | - Rodney D. Priestley
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08540, United States
- Princeton
Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08540, United States
| |
Collapse
|
15
|
Han H, Yoon JH, Yi GR, Choi WI, Lim JM. High-speed continuous production of polymeric nanoparticles with improved stability using a self-aligned coaxial turbulent jet mixer. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Continuous and large-scale fabrication of lecithin stabilized nanoparticles with predictable size and stability using flash nano-precipitation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V, Cosco D. Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors. Front Pharmacol 2021; 12:601626. [PMID: 33613290 PMCID: PMC7887387 DOI: 10.3389/fphar.2021.601626] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Advances in nanotechnology have favored the development of novel colloidal formulations able to modulate the pharmacological and biopharmaceutical properties of drugs. The peculiar physico-chemical and technological properties of nanomaterial-based therapeutics have allowed for several successful applications in the treatment of cancer. The size, shape, charge and patterning of nanoscale therapeutic molecules are parameters that need to be investigated and modulated in order to promote and optimize cell and tissue interaction. In this review, the use of polymeric nanoparticles as drug delivery systems of anticancer compounds, their physico-chemical properties and their ability to be efficiently localized in specific tumor tissues have been described. The nanoencapsulation of antitumor active compounds in polymeric systems is a promising approach to improve the efficacy of various tumor treatments.
Collapse
Affiliation(s)
- Agnese Gagliardi
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Elena Giuliano
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Eeda Venkateswararao
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Massimo Fresta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Stefania Bulotta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
18
|
Pan X, Mei S, Lu Y, Yuan J. Synthetic advances of internally nanostructured polymer particles: From and beyond block copolymer. NANO SELECT 2020. [DOI: 10.1002/nano.202000110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Xuefeng Pan
- Department for Electrochemical Energy Storage Helmholtz‐Zentrum Berlin für Materialien und Energie Hahn‐Meitner‐Platz 1 Berlin 14109 Germany
| | - Shilin Mei
- Department for Electrochemical Energy Storage Helmholtz‐Zentrum Berlin für Materialien und Energie Hahn‐Meitner‐Platz 1 Berlin 14109 Germany
| | - Yan Lu
- Department for Electrochemical Energy Storage Helmholtz‐Zentrum Berlin für Materialien und Energie Hahn‐Meitner‐Platz 1 Berlin 14109 Germany
- Institute of Chemistry University of Potsdam Potsdam 14476 Germany
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry Stockholm University Stockholm 10691 Sweden
| |
Collapse
|
19
|
|
20
|
Liu Y, Yang G, Zou D, Hui Y, Nigam K, Middelberg APJ, Zhao CX. Formulation of Nanoparticles Using Mixing-Induced Nanoprecipitation for Drug Delivery. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04747] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yun Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Da Zou
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yue Hui
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Krishna Nigam
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz khas, New Delhi 110016, India
| | - Anton P. J. Middelberg
- Faculty of Engineering, Computer, and Mathematical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|