1
|
Chen KC, Yang SJ, Yang SH, Pai JA, Shieh MJ. Hyaluronan-coated gold nanoshells for enhanced synergistic effect and immunogenic cell response of chemo-photothermal therapy on lung cancer. Int J Biol Macromol 2025; 300:140114. [PMID: 39837437 DOI: 10.1016/j.ijbiomac.2025.140114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/09/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
Lung cancer (LC) is the predominant cause of cancer-related fatalities globally, with the highest death rates in both genders, primarily attributed to smoking. The non-kinase transmembrane cell surface glycoprotein, CD44, enhances LC cell migration and invasion, leading to drug resistance and an unfavorable prognosis. This research formulated a cisplatin-loaded gold nanoshell (HCP@GNS) integrated with hyaluronan (HCP@GNS@HA) to enhance targeting capability and realize a synergistic effect of chemo-photothermal therapy (chemo-PTT) against LC. The coating of hyaluronic acid (HA) facilitated the uptake of HCP@GNS@HA into CD44-rich cancer cells, maintaining the superior photothermal conversion capacity of HCP@GNS nanoparticles for hyperthermia and photothermal eradication of tumor tissues under near-infrared exposure. As a nanocarrier, HCP@GNS@HA exhibited high biocompatibility and hemocompatibility, showing stronger cytotoxicity than either the free drug or photothermal therapy alone when combined with NIR irradiation, especially at high cis-diamminedichloroplatinum (II) (CDDP) concentrations. The chemo-PTT mediated by HCP@GNS@HA effectively curtailed tumor growth without adverse effects, significantly mobilizing B cells, DC cells, macrophages, natural killer (NK) cells, and NKT cells in the distal tumor against tumor growth. In conclusion, the developed hyaluronic acid (HA)-coated gold nanoshells could potentially serve as a promising candidate for nanomedicine, tackling both primary and distal LC growth.
Collapse
Affiliation(s)
- Ke-Cheng Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan; Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
| | - Shu-Jyuan Yang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan.
| | - Shih-Hung Yang
- Department of Oncology, National Taiwan University Hospital and College of Medicine, National Taiwan University, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
| | - Jui-An Pai
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan; Department of Oncology, National Taiwan University Hospital and College of Medicine, National Taiwan University, No. 7, Chung-Shan South Road, Taipei 100, Taiwan.
| |
Collapse
|
2
|
Chang CH, Yang SJ, Young TH, Yao WC. Effect of co-loaded vitamin D3 on intravenous injectable raloxifene delivery system. Colloids Surf B Biointerfaces 2025; 246:114379. [PMID: 39566355 DOI: 10.1016/j.colsurfb.2024.114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Owing to its promising advantages, including improved drug bioavailability and therapeutic efficiency at low doses and frequency, increased patient convenience and compliance, and prolonged storage life, nanomedicine has received heightened attention over conventional pharmaceuticals. Human serum albumin (HSA)-based nanoparticles have been used as drug carriers in injectable formulations, with great success and versatility. In this study, raloxifene and vitamin D3 were co-encapsulated in HSA-based nanoparticles (Ral/VitaD/HSA/PSS NPs) as an intravenously injected pharmaceutical formulation in order to enhance their availability in the body. The lyophilization-hydration method was utilized to develop the Ral/VitaD/HSA/PSS NPs. In addition, the characteristics and stability of the NP and the effect of the co-loading of vitamin D3 on raloxifene release in vitro and in vivo were discussed. The raloxifene and vitamin D3 molecules were successfully encapsulated and well dispersed in an amorphous state within Ral/VitaD/HSA/PSS NPs. The prepared Ral/VitaD/HSA/PSS NPs were lyophilized for long-term storage and were both biocompatible and hemocompatible, enhancing alkaline phosphtase activity in osteoblasts. Delivered via intravenous injection, Ral/VitaD/HSA/PSS NPs addressed the low bioavailability of raloxifene and vitamin D3 caused by oral administration, and improved their compatibility and residence time in the body. Overall, the established raloxifene-vitamin D3-co-loaded NPs may be a potential nanomedicine contender for treating postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Chih-Hao Chang
- Department of Orthopedics, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan.
| | - Shu-Jyuan Yang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan.
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Wei-Cheng Yao
- Department of Anesthesiology and Pain Medicine, Min-Sheng General Hospital, No. 168, Jingguo Road, Taoyuan Dis., Taoyuan City 330, Taiwan
| |
Collapse
|
3
|
Wu Y, Deng S, Wei S, Wei W, He Y, Guo J. Adipocyte-Targeted Nanotechnology and Cell-Based Therapy for Obesity Treatment. ChemMedChem 2025; 20:e202400611. [PMID: 39390653 DOI: 10.1002/cmdc.202400611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024]
Abstract
Obesity is a critical risk factor for the development of metabolic diseases and is often associated with dysfunctional adipocytes. Prevalent treatments such as lifestyle intervention, pharmacotherapy, and bariatric surgery are often accompanied by adverse side effects and poor patient compliance. Nanotechnology and cell-based therapy offer innovative approaches for targeted obesity treatments, as they can directly target adipocytes, regulate lipid metabolism, and minimize off-target effects. Here, we provide an overview of the intricate relationship between adipocytes and obesity, highlighting the potential of nanotechnology and cell-based therapy in obesity treatment. Additionally, we discuss the advancements of adipose-derived mesenchymal stem cells (ADMSCs) in obesity progression, including the latest challenges and considerations for developing adipose-targeted treatments for obesity. The objective is to provide a perspective on the design and development of nanotechnology and cell-based therapy for treating obesity and related comorbidities.
Collapse
Affiliation(s)
- Yue Wu
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Siqi Deng
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Siyu Wei
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Wenqi Wei
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- Bioproducts Institute, Department of Chemical and Biological Engineering, The, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- State Key Laboratory of Polymer Materials Engineering, Department of Chemical and Biological Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
4
|
Sarkar T, Sahoo S, Neekhra S, Paul M, Biswas S, Babu BN, Srivastava R, Hussain A. A dipyridophenazine Ni(II) dithiolene complex as a dual-acting cancer phototherapy agent activatable within the phototherapeutic window. Eur J Med Chem 2023; 261:115816. [PMID: 37717381 DOI: 10.1016/j.ejmech.2023.115816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
A combination of photodynamic therapy (PDT) and photothermal therapy (PTT) within the phototherapeutic window (600-900 nm) can lead to significantly enhanced therapeutic outcomes, surpassing the efficacy observed with PDT or PTT alone in cancer phototherapy. Herein, we report a novel small-molecule mixed-ligand Ni(II)-dithiolene complex (Ni-TDD) with a dipyridophenazine ligand, demonstrating potent red-light PDT and significant near-infrared (NIR) light mild-temperature PTT activity against cancer cells and 3D multicellular tumour spheroids (MCTSs). The four-coordinate square planar complex exhibited a moderately intense absorption band (ε ∼ 3700 M-1cm-1) centered around 900 nm and demonstrated excellent dark and photostability in an aqueous phase. Ni-TDD induced a potent red-light (600-720 nm) PDT effect on HeLa cancer cells (IC50 = 1.8 μM, photo irritation factor = 44), triggering apoptotic cell death through efficient singlet oxygen generation. Ni-TDD showed a significant intercalative binding affinity towards double-helical calf thymus DNA, resulting in a binding constant (Kb) ∼ 106 M-1. The complex induced mild hyperthermia and exerted a significant mild-temperature PTT effect on MDA-MB-231 cancer cells upon irradiation with 808 nm NIR light. Simultaneous irradiation of Ni-TDD-treated HeLa MCTSs with red and NIR light led to a remarkable synergistic inhibition of growth, exceeding the effects of individual irradiation, through the generation of singlet oxygen and mild hyperthermia. Ni-TDD displayed minimal toxicity towards non-cancerous HPL1D and L929 cells, even at high micromolar concentrations. This is the first report of a Ni(II) complex demonstrating red-light PDT activity and the first example of a first-row transition metal complex exhibiting combined PDT and PTT effects within the clinically relevant phototherapeutic window. Our findings pave the way for designing and developing metal-dithiolene complexes as dual-acting cancer phototherapy agents using long wavelength light for treating solid tumors.
Collapse
Affiliation(s)
- Tukki Sarkar
- Department of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Somarupa Sahoo
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Suditi Neekhra
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076, India
| | - Milan Paul
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, 500078, Telangana, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, 500078, Telangana, India.
| | - Bathini Nagendra Babu
- Department of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076, India.
| | - Akhtar Hussain
- Department of Chemistry, Handique Girls' College, Guwahati, 781001, Assam, India.
| |
Collapse
|
5
|
Malekzadeh R, Mortezazadeh T, Abdulsahib WK, Babaye Abdollahi B, Hamblin MR, Mansoori B, Alsaikhan F, Zeng B. Nanoarchitecture-based photothermal ablation of cancer: A systematic review. ENVIRONMENTAL RESEARCH 2023; 236:116526. [PMID: 37487920 DOI: 10.1016/j.envres.2023.116526] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023]
Abstract
Photothermal therapy (PTT) is an emerging non-invasive method used in cancer treatment. In PTT, near-infrared laser light is absorbed by a chromophore and converted into heat within the tumor tissue. PTT for cancer usually combines a variety of interactive plasmonic nanomaterials with laser irradiation. PTT enjoys PT agents with high conversion efficiency to convert light into heat to destroy malignant tissue. In this review, published studies concerned with the use of nanoparticles (NPs) in PTT were collected by a systematic and comprehensive search of PubMed, Cochrane, Embase, and Scopus databases. Gold, silver and iron NPs were the most frequent choice in PTT. The use of surface modified NPs allowed selective delivery and led to a precise controlled increase in the local temperature. The presence of NPs during PTT can increase the reactive generation of oxygen species, damage the DNA and mitochondria, leading to cancer cell death mainly via apoptosis. Many studies recently used core-shell metal NPs, and the effects of the polymer coating or ligands targeted to specific cellular receptors in order to increase PTT efficiency were often reported. The effective parameters (NP type, size, concentration, coated polymers or attached ligands, exposure conditions, cell line or type, and cell death mechanisms) were investigated individually. With the advances in chemical synthesis technology, NPs with different shapes, sizes, and coatings can be prepared with desirable properties, to achieve multimodal cancer treatment with precision and specificity.
Collapse
Affiliation(s)
- Reza Malekzadeh
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Medical Radiation Science Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Mortezazadeh
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Waleed K Abdulsahib
- Department of Pharmacology and Toxicology, College of Pharmacy, Al Farahidi University, Baghdad, Iraq
| | - Behnaz Babaye Abdollahi
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Behzad Mansoori
- The Wistar Institute, Cellular and Molecular Oncogenesis Program, Philadelphia, PA, USA.
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Bo Zeng
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, China.
| |
Collapse
|
6
|
Zhou SH, Wang RD, Wu TT, Deng SH, Guo JC, Zhou SM, Zhou X, Du J, Zhao QH, Ren X, Xie MJ. Long rod-shaped gallium composite material: Self-separating material aggregation induced enhancement of ROS for photothermal/photodynamic therapy of HCT116 cells. Eur J Med Chem 2023; 262:115892. [PMID: 39491428 DOI: 10.1016/j.ejmech.2023.115892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
As many of the disadvantages of traditional single therapy can be avoided with combination therapy, combination therapy has become a new treatment method. Herein, a long rod-shaped gallium composite multifunctional material (CP-Au-PEG-FA@BSA@IR780) based on chemotherapy therapy (CT), photothermal therapy (PTT) and photodynamic therapy (PDT) is constructed to increase reactive oxygen species (ROS) levels and Au NP release. CP-Au-PEG-FA@BSA@IR780 has fluorescence localization characteristics and can combine with CT-DNA to cause cancer cell apoptosis. The in vitro cytotoxicity experiments showed the excellent biocompatibility and great therapeutic efficacy of the designed nanoplatform compared to those of the IR780 group, which had weak red fluorescence. The in vivo experiments also showed that the designed micro/nano platform can effectively eliminate HCT116 tumors by allowing the temperature of the tumor site to exceed 55 °C (thermal ablation) under light irradiation. The main mechanism of chemotherapy indicated that the presence of Fe2+/Fe3+ can disrupt the rod-shaped structure of the original material and increase the content of Ga3+. Overall, CP-Au-PEG-FA@BSA@IR780 is a promising cancer therapy strategy that combines CT, PTT, and PDT and provides new insights into the synthesis method of enhancing composite materials with photothermal properties.
Collapse
Affiliation(s)
- Si-Han Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China; International Institute of Rivers and Ecological Security, Yunnan University, Kunming, 650091, Yunnan, China
| | - Rui-Dong Wang
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Tian-Tian Wu
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Shi-Hui Deng
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Ji-Chao Guo
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Shu-Min Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Xuan Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Jiajia Du
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Qi-Hua Zhao
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China
| | - Xiaoxia Ren
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China
| | - Ming-Jin Xie
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, Yunnan, China.
| |
Collapse
|
7
|
Yang SJ, Pai JA, Shieh MJ, Chen JLY, Chen KC. Cisplatin-loaded gold nanoshells mediate chemo-photothermal therapy against primary and distal lung cancers growth. Biomed Pharmacother 2023; 158:114146. [PMID: 36584428 DOI: 10.1016/j.biopha.2022.114146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is the most common cause of cancer mortality worldwide. The advances in surgery, radiotherapy, chemotherapeutic and immunotherapeutic drugs have progressed in the past decades, but the prognosis of lung cancer is still poor. In this study, we developed cisplatin (CDDP)-loaded human serum albumin (HSA)-based gold nanoshells (HCP@GNSs) for synergistic chemo-photothermal therapy (chemo-PTT). The HCP@GNSs not only acted as drug nanocarriers for chemotherapy but also serve as a superior mediator for PTT, which could exhibit a temperature increase upon a near infrared (NIR) laser exposure that was sufficient for photothermal ablation. HCP@GNSs were highly biocompatible and hemocompatible nanocarriers, while the synergistic chemo-PTT resulting from HCP@GNSs plus NIR exposure displayed stronger cytotoxicity effect than HCP@GNSs or PTT alone, especially at a low CDDP concentration. In vivo analysis demonstrated that HCP@GNSs-mediated chemo-PTT increased necrosis in tumors to achieve a high tumor clearance rate with no adverse side effects. Moreover, HCP@GNSs-medicated chemo-PTT induced the recruitment of dendritic cells, B-cells, and natural killer T-cells in distal tumors to inhibit the growth of the tumors. Therefore, the CDDP-loaded HCP@GNSs may be a potential nanomedicine candidate for curative lung cancer treatment in the future.
Collapse
Affiliation(s)
- Shu-Jyuan Yang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Jui-An Pai
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan; Department of Oncology, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
| | - Jenny Ling-Yu Chen
- Department of Radiology, National Taiwan University College of Medicine, Taipei, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
| | - Ke-Cheng Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan; Department of Surgery, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei 100, Taiwan.
| |
Collapse
|
8
|
Yang SJ, Chang CH, Young TH, Wang CH, Tseng TH, Wang ML. Human serum albumin-based nanoparticles alter raloxifene administration and improve bioavailability. Drug Deliv 2022; 29:2685-2693. [PMID: 35975329 PMCID: PMC9387319 DOI: 10.1080/10717544.2022.2111479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Osteoporosis is a disease that reduces bone mass and microarchitecture, which makes bones fragile. Postmenopausal osteoporosis occurs due to estrogen deficiency. Raloxifene is a selective estrogen receptor modulator used to treat postmenopausal osteoporosis. However, it has a low bioavailability, which requires long-term, high-dose raloxifene administration to be effective and causes several side effects. Herein, raloxifene was encapsulated in human serum albumin (HSA)-based nanoparticles (Ral/HSA/PSS NPs) as an intravenous-injection pharmaceutical formulation to increase its bioavailability and reduce the treatment dosage and time. In vitro results indicated that raloxifene molecules were well distributed in HSA-based nanoparticles as an amorphous state, and the resulting raloxifene formulation was stabile during long-term storage duration. The Ral/HSA/PSS NPs were both biocompatible and hemocompatible with a decreased cytotoxicity of high-dose raloxifene. Moreover, the intravenous administration of the prepared Ral/HSA/PSS NPs to rats improved raloxifene bioavailability and improved its half-life in plasma. These raloxifene-loaded nanoparticles may be a potential nanomedicine candidate for treating postmenopausal osteoporosis with lower raloxifene dosages.
Collapse
Affiliation(s)
- Shu-Jyuan Yang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chih-Hao Chang
- Department of Orthopedics, National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan.,Department of Orthopedics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chung-Hao Wang
- CYBER ELITE LIMITED, Vistra Corporate Services Centre, Apia, Samoa
| | - Tzu-Hao Tseng
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.,Department of Orthopaedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Man-Ling Wang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Anesthesiology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
9
|
Mishra SK, Dhadve AC, Mal A, Reddy BPK, Hole A, Chilakapati MK, Ray P, Srivastava R, De A. Photothermal therapy (PTT) is an effective treatment measure against solid tumors which fails to respond conventional chemo/radiation therapies in clinic. BIOMATERIALS ADVANCES 2022; 143:213153. [PMID: 36343390 DOI: 10.1016/j.bioadv.2022.213153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Photothermal therapy (PTT) has emerged as a fast, precisive, and cost-effective anticancer therapy protocol. Here we applied our previously designed nanomaterial (Tocophotoxil) for prospective PTT application to manage radiation- and chemo-resistant cancers in a preclinical model. A PTT dose vs. efficacy relationship was established for radioresistant breast (ZR-75-1 50Gy, 4T1 20Gy) and chemo-resistant ovarian (A2780LR) cancer cells and tumors in mice models. Compared to the sensitive cases, resistant cells treated with PTT for a shorter duration show higher endurance. However, preclinical tumor xenografts treated with optimal PTT dose show 2-3 fold higher longevity (P ≤ 0.05) of treated mice monitored by non-invasive imaging methods. Elevated ERK and AKT activation in radioresistant or only AKT activation in chemo-resistant cells were contributory to higher cell survival in sub-optimal PTT dose. A comprehensive single-cell Raman map of PTT treated ZR-75-1 cell reveals broad-spectrum macromolecular deformities, including protein damage features. Marked induction of pJNK, unfolded protein response (UPR) pathway, increased reactive oxygen species (ROS), and lipid peroxidation in PTT-treated cells disrupted the intracellular homeostasis. Analyzing cellular ultrastructure, the coexistence of swollen endoplasmic reticulum, and autophagic bodies after PTT indicate possible coordination between UPR and autophagy pathways. Therefore, this comprehensive study provides new evidence on the potential impact of PTT as a standalone therapy for ablation of failed conventional therapy-resistant cancers in vivo, the success of which is intricately linked to the PTT dose optimization. The study, for the first time, also illustrates that under PTT treatment, concerted action of novel molecular switches such as JNK activation and UPR activation plays a vital role in triggering autophagy and cancer cell death.
Collapse
Affiliation(s)
- Sumit K Mishra
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India; Department of Life Sciences, Homi Bhaba National Institute, Mumbai, India
| | - Ajit C Dhadve
- Imaging Cell Signaling and Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India; Department of Life Sciences, Homi Bhaba National Institute, Mumbai, India
| | - Arijit Mal
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India; Department of Life Sciences, Homi Bhaba National Institute, Mumbai, India
| | - B Pradeep K Reddy
- NanoBios Lab, Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Arti Hole
- Chilakapati Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Murali Krishna Chilakapati
- Chilakapati Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India; Department of Life Sciences, Homi Bhaba National Institute, Mumbai, India.
| | - Pritha Ray
- Imaging Cell Signaling and Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India; Department of Life Sciences, Homi Bhaba National Institute, Mumbai, India.
| | - Rohit Srivastava
- NanoBios Lab, Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India; Department of Life Sciences, Homi Bhaba National Institute, Mumbai, India.
| |
Collapse
|
10
|
Shukla A, Maiti P. Nanomedicine and versatile therapies for cancer treatment. MedComm (Beijing) 2022; 3:e163. [PMID: 35992969 PMCID: PMC9386439 DOI: 10.1002/mco2.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/19/2022] Open
Abstract
The higher prevalence of cancer is related to high rates of mortality and morbidity worldwide. By virtue of the properties of matter at the nanoscale, nanomedicine is proven to be a powerful tool to develop innovative drug carriers with greater efficacies and fewer side effects than conventional therapies. In this review, different nanocarriers for controlled drug release and their routes of administration have been discussed in detail, especially for cancer treatment. Special emphasis has been given on the design of drug delivery vehicles for sustained release and specific application methods for targeted delivery to the affected areas. Different polymeric vehicles designed for the delivery of chemotherapeutics have been discussed, including graft copolymers, liposomes, hydrogels, dendrimers, micelles, and nanoparticles. Furthermore, the effect of dimensional properties on chemotherapy is vividly described. Another integral section of the review focuses on the modes of administration of nanomedicines and emerging therapies, such as photothermal, photodynamic, immunotherapy, chemodynamic, and gas therapy, for cancer treatment. The properties, therapeutic value, advantages, and limitations of these nanomedicines are highlighted, with a focus on their increased performance versus conventional molecular anticancer therapies.
Collapse
Affiliation(s)
- Aparna Shukla
- School of Materials Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Pralay Maiti
- School of Materials Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| |
Collapse
|
11
|
Prasad R, Conde J. Bioinspired soft nanovesicles for site-selective cancer imaging and targeted therapies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1792. [PMID: 35318815 DOI: 10.1002/wnan.1792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/17/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Cell-to-cell communication within the heterogeneous solid tumor environment plays a significant role in the uncontrolled metastasis of cancer. To inhibit the metastasis and growth of cancer cells, various chemically designed and biologically derived nanosized biomaterials have been applied for targeted cancer therapeutics applications. Over the years, bioinspired soft nanovesicles have gained tremendous attention for targeted cancer therapeutics due to their easy binding with tumor microenvironment, natural targeting ability, bio-responsive nature, better biocompatibility, high cargo capacity for multiple therapeutics agents, and long circulation time. These cell-derived nanovesicles guard their loaded cargo molecules from immune clearance and make them site-selective to cancer cells due to their natural binding and delivery abilities. Furthermore, bioinspired soft nanovesicles prevent cell-to-cell communication and secretion of cancer cell markers by delivering the therapeutics agents predominantly. Cell-derived vesicles, namely, exosomes, extracellular vesicles, and so forth have been recognized as versatile carriers for therapeutic biomolecules. However, low product yield, poor reproducibility, and uncontrolled particle size distribution have remained as major challenges of these soft nanovesicles. Furthermore, the surface biomarkers and molecular contents of these vesicles change with respect to the stage of disease and types. Here in this review, we have discussed numerous examples of bioinspired soft vesicles for targeted imaging and cancer therapeutic applications with their advantages and limitations. Importance of bioengineered soft nanovesicles for localized therapies with their clinical relevance has also been addressed in this article. Overall, cell-derived nanovesicles could be considered as clinically relevant platforms for cancer therapeutics. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Rajendra Prasad
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - João Conde
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
12
|
Appidi T, P S R, Chinchulkar SA, Pradhan A, Begum H, Shetty V, Srivastava R, Ganesan P, Rengan AK. A plasmon-enhanced fluorescent gold coated novel lipo-polymeric hybrid nanosystem: synthesis, characterization and application for imaging and photothermal therapy of breast cancer. NANOSCALE 2022; 14:9112-9123. [PMID: 35722896 DOI: 10.1039/d2nr01378a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study reports a hybrid lipo-polymeric nanosystem (PDPC NPs) synthesized by a modified hydrogel-isolation technique. The ability of the nanosystem to encapsulate hydrophilic and hydrophobic molecules has been demonstrated, and their enhanced cellular uptake has been observed in vitro. The PDPC NPs, surface coated with gold by in situ reduction of chloroauric acid (PDPC-Au NPs), showed a photothermal transduction efficacy of ∼65%. The PDPC-Au NPs demonstrated an increase in intracellular ROS, triggered DNA damage and resulted in apoptotic cell death when tested against breast cancer cells (MCF-7). The disintegration of PDPC-Au NPs into smaller nanoparticles with near-infrared (NIR) laser irradiation was understood using transmission electron microscopy imaging. The lipo-polymeric hybrid nanosystem exhibited plasmon-enhanced fluorescence when loaded with IR780 (a NIR dye), followed by surface coating with gold (PDPC-IR-Au NPs). This paper is one of the first reports on the plasmon-enhanced fluorescence within a nanosystem by simple surface coating of Au, to the best of our knowledge. This plasmon-enhanced fluorescence was unique to the lipo-polymeric hybrid system, as the same was not observed with a liposomal nanosystem. The plasmon-enhanced fluorescence of PDPC-IR-Au NPs, when applied for imaging cancer cells and zebrafish embryos, showed a strong fluorescence signal at minimal concentrations of the dye. The PDPC-IR-Au NPs were also applied for photothermal therapy of breast cancer in vitro and in vivo, and the results depicted significant therapeutic benefits.
Collapse
Affiliation(s)
- Tejaswini Appidi
- Dept. of Biomedical Engineering, Indian Institute of Technology Hyderabad, India.
| | - Rajalakshmi P S
- Dept. of Biomedical Engineering, Indian Institute of Technology Hyderabad, India.
| | | | - Arpan Pradhan
- Dept. of Biosciences and Bioengineering, Indian Institute of Technology Bombay, India
| | - Hajira Begum
- Dept. of Chemistry, Indian Institute of Technology Hyderabad, India
| | - Veeresh Shetty
- Dept. of Chemistry, Indian Institute of Technology Hyderabad, India
| | - Rohit Srivastava
- Dept. of Biosciences and Bioengineering, Indian Institute of Technology Bombay, India
| | | | - Aravind Kumar Rengan
- Dept. of Biomedical Engineering, Indian Institute of Technology Hyderabad, India.
| |
Collapse
|
13
|
Yang SJ, Huang HT, Huang CH, Pai JA, Wang CH, Shieh MJ. The synergistic effect of chemo-photothermal therapies in SN-38-loaded gold-nanoshell-based colorectal cancer treatment. Nanomedicine (Lond) 2021; 17:23-40. [PMID: 34918941 DOI: 10.2217/nnm-2021-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: 7-Ethyl-10-hydroxycamptothecin (SN-38)-loaded gold nanoshells nanoparticles (HSP@Au NPs) were developed for combined chemo-photothermal therapy to treat colorectal cancer. Materials & methods: SN-38-loaded nanoparticles (HSP NPs) were prepared by the lyophilization-hydration method, and then developed into gold nanoshells. The nanoparticles were characterized and assessed for photothermal properties, cytotoxicity and hemocompatibility in vitro. In vivo anticancer activity was tested in a tumor mouse model. Results: The HSP@Au NPs (diameter 186.9 nm, zeta potential 33.4 mV) led to significant cytotoxicity in cancer cells exposed to a near-infrared laser. Moreover, the HSP@Au NP-mediated chemo-photothermal therapy displayed significant tumor growth suppression and disappearance (25% of tumor clearance rate) without adverse side effects in vivo. Conclusion: HSP@Au NPs may be promising in the treatment of colorectal cancer in the future.
Collapse
Affiliation(s)
- Shu-Jyuan Yang
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, Taipei, 100, Taiwan
| | - Hsiao-Ting Huang
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, Taipei, 100, Taiwan
| | - Chung-Huan Huang
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, Taipei, 100, Taiwan
| | - Jui-An Pai
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, Taipei, 100, Taiwan
| | - Chung-Hao Wang
- Gene'e Tech Co. Ltd. 2F., No. 661, Bannan Rd., Zhonghe District, New Taipei City, 235, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, Taipei, 100, Taiwan.,Department of Oncology, National Taiwan University Hospital & College of Medicine, Taipei, 100, Taiwan
| |
Collapse
|
14
|
Mishra SK, Hole A, Reddy BPK, Srivastava R, Chilakapati MK, De A. Raman micro-spectroscopic map estimating in vivo precision of tumor ablative effect achieved by photothermal therapy procedure. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102437. [PMID: 34273597 DOI: 10.1016/j.nano.2021.102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/04/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022]
Abstract
Photothermal-therapy (PTT) inculcates near-infrared laser guided local heating effect, where high degree of precision is expected, but not well proven to-date. An ex vivo tissue biochemical map with molecular/biochemical response showing the coverage area out of an optimized PTT procedure can reveal precision information. In this work, Raman-microscopic mapping and linear discriminant analysis of spectra of PTT treated and surrounding tissue areas ex vivo are done, revealing three distinct spectral clusters/zones, with minimal overlap between the core treated and adjacent untreated zone. The core treated zone showed intense nucleic-acid, cytochrome/mitochondria and protein damage, an adjacent zone showed lesser degree of damages and far zone showed minimal/no damage. Immunohistochemistry for γH2AX (DNA damage marker protein) in PTT exposed tissue also revealed similar results. Altogether, this study reveals the utility of Raman-microspectroscopy for fine-tuning safety parameters and precision that can be achieved from PTT mediated tumor ablation in preclinical/clinical application.
Collapse
Affiliation(s)
- Sumit K Mishra
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India; Department of Life Sciences, Homi Bhaba National Institute, Mumbai, India.
| | - Arti Hole
- Chilakapati Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India.
| | - B Pradeep K Reddy
- NanoBios Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| | - Rohit Srivastava
- NanoBios Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| | - Murali Krishna Chilakapati
- Chilakapati Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India; Department of Life Sciences, Homi Bhaba National Institute, Mumbai, India.
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India; Department of Life Sciences, Homi Bhaba National Institute, Mumbai, India.
| |
Collapse
|
15
|
Chauhan DS, Dhasmana A, Laskar P, Prasad R, Jain NK, Srivastava R, Jaggi M, Chauhan SC, Yallapu MM. Nanotechnology synergized immunoengineering for cancer. Eur J Pharm Biopharm 2021; 163:72-101. [PMID: 33774162 PMCID: PMC8170847 DOI: 10.1016/j.ejpb.2021.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 12/26/2022]
Abstract
Novel strategies modulating the immune system yielded enhanced anticancer responses and improved cancer survival. Nevertheless, the success rate of immunotherapy in cancer treatment has been below expectation(s) due to unpredictable efficacy and off-target effects from systemic dosing of immunotherapeutic(s). As a result, there is an unmet clinical need for improving conventional immunotherapy. Nanotechnology offers several new strategies, multimodality, and multiplex biological targeting advantage to overcome many of these challenges. These efforts enable programming the pharmacodynamics, pharmacokinetics, and delivery of immunomodulatory agents/co-delivery of compounds to prime at the tumor sites for improved therapeutic benefits. This review provides an overview of the design and clinical principles of biomaterials driven nanotechnology and their potential use in personalized nanomedicines, vaccines, localized tumor modulation, and delivery strategies for cancer immunotherapy. In this review, we also summarize the latest highlights and recent advances in combinatorial therapies availed in the treatment of cold and complicated tumors. It also presents key steps and parameters implemented for clinical success. Finally, we analyse, discuss, and provide clinical perspectives on the integrated opportunities of nanotechnology and immunology to achieve synergistic and durable responses in cancer treatment.
Collapse
Affiliation(s)
- Deepak S Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Partha Laskar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Rajendra Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Nishant K Jain
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
16
|
Jia S, Wang S, Li S, Hu P, Yu S, Shi J, Yuan J. Specific modification and self-transport of porphyrins and their multi-mechanism cooperative antitumor studies. J Mater Chem B 2021; 9:3180-3191. [PMID: 33885622 DOI: 10.1039/d0tb02847a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In order to reduce the toxicity and side effects of anti-tumor drugs and improve their therapeutic effect against cancer, photodynamic and chemical combination therapy has been exploited. However, the complicated preparation and metabolic toxicity of photosensitizer-loaded materials remain major obstacles for bioapplications. In this study, we designed and prepared a specific photosensitizer self-transporting drug-delivery system. First, 5,10,15,20-tetrakis(4-aminophenyl)-21H,23H-porphine (TAPP) was modified using specific molecules of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) with a certain antitumor effect, to prepare a specific fluorescent amphiphilic system (TAPP-TPGS). Then, the drug-loaded fluorescence nanomicelle (TAPP-TPGS/PTX) was formed via self-assembly using the amphiphilic system and the anticancer drug paclitaxel (PTX). The carrier material could be used as a drug tracer and cancer therapy reagent to synergistically trace the chemotherapy drug and treat cancers. The biocompatibility and the enhanced antitumor effect of TAPP-TPGS/PTX were confirmed by in vitro and in vivo experiments. To detect the synergistic anticancer effect enhanced by TPGS, TAPP-mPEG synthesized with a similar method as TAPP-TPGS was used for a comparative analysis. The results showed that the excellent synergistic anticancer effect of the TAPP-TPGS/PTX was enhanced due to the introduction of TPGS. Thus, the specific porphyrin self-transporting nanomicelle is a very promising carrier material for applications in biomedicine.
Collapse
Affiliation(s)
- Shuxin Jia
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Jejurkar VP, Yashwantrao G, Kumar P, Neekhra S, Maliekal PJ, Badani P, Srivastava R, Saha S. Design and Development of Axially Chiral Bis(naphthofuran) Luminogens as Fluorescent Probes for Cell Imaging. Chemistry 2021; 27:5470-5482. [PMID: 33368715 DOI: 10.1002/chem.202004942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 11/07/2022]
Abstract
Designing chiral AIEgens without aggregation-induced emission (AIE)-active molecules externally tagged to the chiral scaffold remains a long-standing challenge for the scientific community. The inherent aggregation-caused quenching phenomenon associated with the axially chiral (R)-[1,1'-binaphthalene]-2,2'-diol ((R)-BINOL) scaffold, together with its marginal Stokes shift, limits its application as a chiral AIE-active material. Here, in our effort to design chiral luminogens, we have developed a design strategy in which 2-substituted furans, when appropriately fused with the BINOL scaffold, will generate solid-state emissive materials with high thermal and photostability as well as colour-tunable properties. The excellent biocompatibility, together with the high fluorescence quantum yield and large Stokes shift, of one of the luminogens stimulated us to investigate its cell-imaging potential. The luminogen was observed to be well internalised and uniformly dispersed within the cytoplasm of MDA-MB-231 cancer cells, showing high fluorescence intensity.
Collapse
Affiliation(s)
- Valmik P Jejurkar
- Department of Speciality Chemicals Technology, Institute of Chemical Technology (ICT), Mumbai, 400019, India
| | - Gauravi Yashwantrao
- Department of Speciality Chemicals Technology, Institute of Chemical Technology (ICT), Mumbai, 400019, India
| | - Pawan Kumar
- Department of Biotechnology, BIT Mesra, Ranchi, India
| | - Suditi Neekhra
- Department of Biosciences and Bioengineering, IIT Bombay, Bombay, India
| | | | - Purav Badani
- Department of Chemistry, University of Mumbai, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, IIT Bombay, Bombay, India
| | - Satyajit Saha
- Department of Speciality Chemicals Technology, Institute of Chemical Technology (ICT), Mumbai, 400019, India
| |
Collapse
|
18
|
Rahban D, Doostan M, Salimi A. Cancer Therapy; Prospects for Application of Nanoparticles for Magnetic-Based Hyperthermia. Cancer Invest 2020; 38:507-521. [PMID: 32870068 DOI: 10.1080/07357907.2020.1817482] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hyperthermic therapy is defined as increasing the temperature of tumor tissues to 40-43 °C that has been effective approach for destroying malignant cells in the field of cancer therapy. Recent line of research has applied different approaches along with hyperthermic treatment to obtain high efficiency and little side effects. Magnetic nanoparticle-based hyperthermia has demonstrated an improved functionality in targeting malignant cells and implement their therapeutic role by heating the tumor cells. Here in this review article, we clarify the diverse aspects of magnetic nanoparticles in the treatment of cancer.
Collapse
Affiliation(s)
- Dariuosh Rahban
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahtab Doostan
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Salimi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Gadag S, Sinha S, Nayak Y, Garg S, Nayak UY. Combination Therapy and Nanoparticulate Systems: Smart Approaches for the Effective Treatment of Breast Cancer. Pharmaceutics 2020; 12:E524. [PMID: 32521684 PMCID: PMC7355786 DOI: 10.3390/pharmaceutics12060524] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer has become one of the biggest concerns for oncologists in the past few decades because of its unpredictable etiopathology and nonavailability of personalized translational medicine. The number of women getting affected by breast cancer has increased dramatically, owing to lifestyle and environmental changes. Besides, the development of multidrug resistance has become a challenge in the therapeutic management of breast cancer. Studies reveal that the use of monotherapy is not effective in the management of breast cancer due to high toxicity and the development of resistance. Combination therapies, such as radiation therapy with adjuvant therapy, endocrine therapy with chemotherapy, and targeted therapy with immunotherapy, are found to be effective. Thus, multimodal and combination treatments, along with nanomedicine, have emerged as a promising strategy with minimum side effects and drug resistance. In this review, we emphasize the multimodal approaches and recent advancements in breast cancer treatment modalities, giving importance to the current data on clinical trials. The novel treatment approach by targeted therapy, according to type, such as luminal, HER2 positive, and triple-negative breast cancer, are discussed. Further, passive and active targeting technologies, including nanoparticles, bioconjugate systems, stimuli-responsive, and nucleic acid delivery systems, including siRNA and aptamer, are explained. The recent research exploring the role of nanomedicine in combination therapy and the possible use of artificial intelligence in breast cancer therapy is also discussed herein. The complexity and dynamism of disease changes require the constant upgrading of knowledge, and innovation is essential for future drug development for treating breast cancer.
Collapse
Affiliation(s)
- Shivaprasad Gadag
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| | - Shristi Sinha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Sanjay Garg
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Usha Y. Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| |
Collapse
|
20
|
Jejurkar VP, Yashwantrao G, Reddy BPK, Ware AP, Pingale SS, Srivastava R, Saha S. Rationally Designed Furocarbazoles as Multifunctional Aggregation Induced Emissive Luminogens for the Sensing of Trinitrophenol (TNP) and Cell Imaging. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Valmik P. Jejurkar
- Dept. of Dyestuff TechnologyInstitute of Chemical Technology Matunga Mumbai Maharashtra 400019 India
| | - Gauravi Yashwantrao
- Dept. of Dyestuff TechnologyInstitute of Chemical Technology Matunga Mumbai Maharashtra 400019 India
| | | | - Anuja P. Ware
- Dept. Of ChemistrySavitribai Phule Pune University Ganeshkhind Pune Maharashtra 411007 India
| | - Subhash S. Pingale
- Dept. Of ChemistrySavitribai Phule Pune University Ganeshkhind Pune Maharashtra 411007 India
| | - Rohit Srivastava
- Dept. of Biosciences and BioengineeringIIT Bombay Mumbai Maharashtra India
| | - Satyajit Saha
- Dept. of Dyestuff TechnologyInstitute of Chemical Technology Matunga Mumbai Maharashtra 400019 India
| |
Collapse
|