1
|
Ahmad A, Roy PG, Hassan A, Zhou S, Azam M, Sial MAZG, Irfan A, Kanwal F, Begum R, Farooqi ZH. Catalytic degradation of various dyes using silver nanoparticles fabricated within chitosan based microgels. Int J Biol Macromol 2024; 283:137965. [PMID: 39581408 DOI: 10.1016/j.ijbiomac.2024.137965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Precipitation polymerization method was used to synthesize chitosan based poly[chitosan-N-isopropylmethacrylamide-acrylic acid] [P(CS-NI-AA)] microgel particles. Synthesized P(CS-NI-AA) microgel particles were utilized as micro-reactors for the fabrication of silver nanoparticles (AgNPs) inside the structure of microgels through chemical reduction of Ag+ ions using NaBH4 as reducing agent. P(CS-NI-AA) and Ag-P(CS-NI-AA) systems were analyzed using various characterization techniques like scanning electron microscopy (SEM), ultraviolet-visible (UV-visible) spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Catalytic activity of Ag-P(CS-NI-AA) for individual and simultaneous degradation of various dyes like methylene blue (MB), Congo red (CR), brilliant blue (Bb), methyl orange (MO) and Rhodamine B (RB) was investigated in aqueous phase using NaBH4 as reductant. The Pseudo 1st order rate constant (k1) for dyes degradation were evaluated. The Ag-P(CS-NI-AA) hybrid system was observed to be efficient, low-cost and stable catalyst for quick degradation of dyes.
Collapse
Affiliation(s)
- Azhar Ahmad
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Prashun Ghosh Roy
- Department of Chemistry of The College of Staten Island and Ph.D. Program in Chemistry of The Graduate Centre, The City University of New York, Staten Island, NY 10314, United States
| | - Ahmad Hassan
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Shuiqin Zhou
- Department of Chemistry of The College of Staten Island and Ph.D. Program in Chemistry of The Graduate Centre, The City University of New York, Staten Island, NY 10314, United States
| | - Muhammad Azam
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Muhammad Aurang Zeb Gul Sial
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Farah Kanwal
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Robina Begum
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Zahoor H Farooqi
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| |
Collapse
|
2
|
Ahmad A, Roy PG, Zhou S, Irfan A, Kanwal F, Begum R, Farooqi ZH. Fabrication of silver nanoparticles within chitosan based microgels for catalysis. Int J Biol Macromol 2023; 240:124401. [PMID: 37044327 DOI: 10.1016/j.ijbiomac.2023.124401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
Chitosan based monodisperse poly[chitosan-N-isopropylmethacrylamide-acrylic acid] [P(CNA)] microgels were produced via precipitation polymerization. Resulting crosslinked P(CNA) micro particles were used as micro-reactors to prepare silver nanoparticles within the polymeric network by chemical reduction of Ag+ ions with sodium borohydride. Various techniques including transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and ultraviolet-visible (UV-vis) spectroscopy were used to analyze P(CNA) microgels and Ag-P(CNA) hybrid microgels. Catalytic potential of Ag-P(CNA) hybrid system towards individual and simultaneous reduction of various nitroarenes like p-nitrophenol (pNP), o-nitrophenol (oNP), p-nitroaniline (pNA) and o-nitroaniline (oNA) into corresponding aminoarenes using sodium borohydride as a reductant in aqueous medium was evaluated. The catalytic activity of Ag-P(CNA) system towards both the individual and simultaneous reduction of nitroarenes was examined at various concentrations of catalyst. The values of pseudo first order rate constant (k1) for reduction of individual nitroarene and multiple nitroarenes were determined for comparison. The Ag-P(CNA) hybrid microgel system was found to be stable, economical and efficient catalyst for rapid individual and simultaneous reduction of nitroarenes.
Collapse
Affiliation(s)
- Azhar Ahmad
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Prashun Ghosh Roy
- Department of Chemistry of The College of Staten Island and Ph.D. Program in Chemistry of The Graduate Centre, The City University of New York, Staten Island, NY 10314, United States
| | - Shuiqin Zhou
- Department of Chemistry of The College of Staten Island and Ph.D. Program in Chemistry of The Graduate Centre, The City University of New York, Staten Island, NY 10314, United States
| | - Ahmad Irfan
- Research Center for Advanced Materials Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Farah Kanwal
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Robina Begum
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Zahoor H Farooqi
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| |
Collapse
|
3
|
Ghorai N, Ghosh HN. Chemical Interface Damping in Nonstoichiometric Semiconductor Plasmonic Nanocrystals: An Effect of the Surrounding Environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5339-5350. [PMID: 35491746 DOI: 10.1021/acs.langmuir.2c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Semiconductor plasmonic nanocrystals (NCs) have been utilized for an enormous number of plasmon-enhanced spectroscopic and energy conversion applications. Plasmonic NCs are extremely high light absorbers, and optical properties can be easily manipulated across the UV-vis-NIR spectrum region by changing mere chemical compositions and the surrounding environment of the NCs. This feature article focuses on reassessing plasmon dynamics by changing the interface composition between NCs and the surrounding medium to ascertain the damping contribution from chemical interface damping (CID). Also, this feature article deciphers a fundamental understanding of hot-carrier relaxation and extraction from plasmonic materials. On the route to determining the different relaxation dynamics of nonstoichiometric Cu2-xS/Se NCs, we have employed a transient ultrafast pump-probe broadband spectrometer. First, we have described the ultrafast plasmon relaxation dynamics of nonstoichiometric Cu2-xS NCs by varying the copper to sulfur ratio, and then we carefully compare how two surface ligands (oleylamine and 3-mercaptopropionic acid) lead to significantly different transient kinetics of the same plasmonic (Cu2-xSe) NCs because of different capping agents. Along with this, we have described the impact of a molecular adsorbate (methylene blue) on ultrafast plasmon relaxation dynamics of the nonstoichiometric Cu2-xSe NCs system. Finally, the chemical interface damping effect has been compared in the Cu2-xS NCs system after capping with two distinct capping ligands: oleylamine and oleic acid. For the proof of concept, plasmonic thin-film devices were fabricated and exhibited higher conductivity/photoconductivity performance in oleic acid-capped NCs because of a deprotonated carboxyl functional group. We have also introduced a model and mechanism of chemical interface damping in a nonstoichiometric plasmonic semiconductor (Cu2-xS/Se) NC system. This feature article highlights the importance of the surface functionalization of nonstoichiometric plasmonic semiconductors to develop new advanced semiconductor-based devices such as infrared photodetectors, plasmonic solar cells, and efficient NIR phototransistors.
Collapse
Affiliation(s)
- Nandan Ghorai
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Hirendra N Ghosh
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
4
|
Koohi F, Zare HR, Shekari Z. Decoration of titanium dioxide nanotubes with silver nanoparticles using the photochemical deposition method and their application as an electrocatalyst to determine tinidazole. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5343-5350. [PMID: 34730130 DOI: 10.1039/d1ay01179k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, titanium nanotube electrodes were decorated with silver nanoparticles (AgNPs/TiO2NTs) and used as an electrocatalyst for the reduction of tinidazole. AgNPs/TiO2NTs are constructed by anodization of titanium sheet metal and photochemical deposition of AgNPs on TiO2NTs. The structural and elemental analysis characteristics of the AgNPs/TiO2NT electrode have been studied by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) methods. Based on the cyclic voltammetric data, it has been confirmed that the AgNPs/TiO2NT electrode has good electrocatalytic activity to reduce tinidazole. Two liner concentration ranges of 0.2-55.0 μM and 55.0-111.2 μM were obtained by amperometric method. A detection limit of 60.9 nM was obtained for measuring tinidazole at the AgNPs/TiO2NT electrode surface. In addition, the designed sensor has been successfully used for quantitative measurement of tinidazole in pharmaceutical and human urine samples.
Collapse
Affiliation(s)
- Fereshteh Koohi
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, Iran.
| | - Hamid R Zare
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, Iran.
| | - Zahra Shekari
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, Iran.
| |
Collapse
|
5
|
Chattopadhyay S, Bysakh S, Mishra PM, De G. In Situ Synthesis of Mesoporous TiO 2 Nanofibers Surface-Decorated with AuAg Alloy Nanoparticles Anchored by Heterojunction Exhibiting Enhanced Solar Active Photocatalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14364-14375. [PMID: 31593629 DOI: 10.1021/acs.langmuir.9b02361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We designed an electrospinning synthesis protocol to obtain in situ, the mesoporous TiO2 nanofibers, which are surface-decorated with plasmonic AuAg nanoparticles (AuAg-mTNF-H). Such alloy nanoparticles are found to be partially exposed on the surface of the nanofibers. Characterization by HRTEM and EDS confirmed the formation of 1:1 AuAg alloy nanoparticles on the surface of TiO2 nanofibers with heterojunction at the interfaces. On the basis of electron microscopic characterization, we proposed that, during the formation of the nanofibers, the incorporated metal ions with surface capping of negative charges migrated toward the outer surface of the nascent fibers under the influence of high positive voltage required for electrospinning. As a result, after the subsequent thermal treatment, the crystallization of TiO2 nanofibers and the formation of alloy nanoparticles took place, leading to the formation of a deep heterojunction through partial embedment of the nanoparticles. The formation of AuAg alloy also restricted the oxidation of Ag, thus making the nanoparticles highly stable in ambient condition. Accordingly, such unique AuAg-mTNF-H photocatalyst shows strong light absorption property covering the entire range of visible wavelengths with stability. The solar light harvesting property of AuAg-mTNF-H was verified by monitoring solar light induced H2 evolution via water splitting and photodecomposition of MB. In both the cases AuAg-mTNF-H showed excellent H2 evolution and photodecomposition of dye.
Collapse
Affiliation(s)
- Shreyasi Chattopadhyay
- CSIR-Central Glass and Ceramic Research Institute , 196, Raja S. C. Mullick Road , Kolkata 700032 , India
| | - Sandip Bysakh
- CSIR-Central Glass and Ceramic Research Institute , 196, Raja S. C. Mullick Road , Kolkata 700032 , India
| | - Pravat Manjari Mishra
- Environment & Sustainability Department , CSIR-Institute of Minerals and Materials Technology , Bhubaneswar 751013 , Odisha , India
| | - Goutam De
- Institute of Nano Science and Technology , Mohali 160062 , Punjab , India
| |
Collapse
|
6
|
Couzon N, Roiban L, Chassagneux F, Bois L, Brioude A, Maillard M. Electroactive Area from Porous Oxide Films Loaded with Silver Nanoparticles: Electrochemical and Electron Tomography Observations. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37270-37278. [PMID: 31523946 DOI: 10.1021/acsami.9b11581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrochemical studies of nanomaterial-based electrodes have been widely developed for catalyst and energy-harvesting applications. The evolution of these electrodes over time and their efficiency have been extensively studied and analyzed in order to optimize their performance. However, the electrochemical responses of electrodes are rarely studied in terms of the position of the active species within these electrodes. In this paper, we highlight that the spatial location of silver nanoparticles (NPs) embedded inside semiconductive porous films, TiO2 or Fe2O3, is crucial for the electrochemical response. In fact, by using cycling voltammetry and electron tomography experiments, we show the existence of an "electroactive area", corresponding to a reduced thickness of the sample in close vicinity to a fluorine-doped tin oxide substrate where most of the electrochemical responses originate. Our results demonstrate that, for a film thickness of several hundred nanometers, only less than 30 nm close to the substrate responds electrochemically. However, cyclic voltammetry empties the electroactive area of silver NPs. Therefore, application of chronoamperometry coupled to irradiation allowed regeneration of this area thanks to an increased diffusion of silver species. In this paper, we also show the significant diffusion of silver species within the film during electrochemical experiments, a phenomenon even increased by irradiation. These results are therefore an important step that shows the importance of the localization of active species within a porous film and help in understanding and increasing the durability of nanomaterial-based electrodes.
Collapse
Affiliation(s)
- Nelly Couzon
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces , F-69622 Villeurbanne , France
| | - Lucian Roiban
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon I, MATEIS, UMR5510 CNRS , 7 Avenue Jean Capelle , 69100 Villeurbanne , France
| | - Fernand Chassagneux
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces , F-69622 Villeurbanne , France
| | - Laurence Bois
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces , F-69622 Villeurbanne , France
| | - Arnaud Brioude
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces , F-69622 Villeurbanne , France
| | - Mathieu Maillard
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces , F-69622 Villeurbanne , France
| |
Collapse
|