1
|
Zhu Z, Heng X, Shan F, Yang H, Wang Y, Zhang H, Chen G, Chen H. Customizable Glycopolymers as Adjuvants for Cancer Immunotherapy: From Branching Degree Optimization to Cell Surface Engineering. Biomacromolecules 2024; 25:7975-7984. [PMID: 39534984 DOI: 10.1021/acs.biomac.4c01230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Engineering dendritic cell (DC) maturation is paramount for robust T-cell responses and immunological memory, critical for cancer immunotherapy. This work unveils a novel strategy using precisely controlled branching in synthetic glycopolymers to optimize DC activation. Using the distinct copolymerization kinetics of 2-(methacrylamido) glucopyranose (MAG) and diethylene glycol dimethacrylate (DEGDMA) in a RAFT polymerization, unique glycopolymers with varying branching degrees are created. These strategically produced gradient branched glycopolymers with sugar moieties on the outer chain potently promote DC maturation. Strikingly, low-branched glycopolymers demonstrate superior activity, both in pure form and when engineered on tumor cell surfaces. Quartz crystal microbalance and theoretical simulations elucidate the crucial role of branching in modulating glycopolymer-DC receptor interactions. Low-branched gradient glycopolymers have shown a notable advantage and are promising adjuvants in DC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Zhichen Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Xingyu Heng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Fangjian Shan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - He Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Yichen Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Hengyuan Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Gaojian Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| |
Collapse
|
2
|
Bhattacharya K, Kalita U, Singha NK. Tailor-made Glycopolymers via Reversible Deactivation Radical Polymerization: Design, Properties and Applications. Polym Chem 2022. [DOI: 10.1039/d1py01640g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigating the underlying mechanism of biological interactions using glycopolymer is becoming increasingly important owing to their unique recognition properties. The multivalent interactions between lectin and glycopolymer are significantly influenced by...
Collapse
|
3
|
Clauss ZS, Wardzala CL, Schlirf AE, Wright NS, Saini SS, Onoa B, Bustamante C, Kramer JR. Tunable, biodegradable grafting-from glycopolypeptide bottlebrush polymers. Nat Commun 2021; 12:6472. [PMID: 34753949 PMCID: PMC8578664 DOI: 10.1038/s41467-021-26808-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/01/2021] [Indexed: 11/09/2022] Open
Abstract
The cellular glycocalyx and extracellular matrix are rich in glycoproteins and proteoglycans that play essential physical and biochemical roles in all life. Synthetic mimics of these natural bottlebrush polymers have wide applications in biomedicine, yet preparation has been challenged by their high grafting and glycosylation densities. Using one-pot dual-catalysis polymerization of glycan-bearing α-amino acid N-carboxyanhydrides, we report grafting-from glycopolypeptide brushes. The materials are chemically and conformationally tunable where backbone and sidechain lengths were precisely altered, grafting density modulated up to 100%, and glycan density and identity tuned by monomer feed ratios. The glycobrushes are composed entirely of sugars and amino acids, are non-toxic to cells, and are degradable by natural proteases. Inspired by native lipid-anchored proteoglycans, cholesterol-modified glycobrushes were displayed on the surface of live human cells. Our materials overcome long-standing challenges in glycobrush polymer synthesis and offer new opportunities to examine glycan presentation and multivalency from chemically defined scaffolds. Synthetic mimics of glycoproteins and proteoglycans have wide applications in biomedicine, yet preparation has been challenged by their high grafting and glycosylation densities. Here the authors show one-pot dual-catalysis polymerization of glycan-bearing α-amino acid N-carboxyanhydrides to form glycopolypeptide brushes.
Collapse
Affiliation(s)
- Zachary S Clauss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA
| | - Casia L Wardzala
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA
| | - Austin E Schlirf
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA
| | - Nathaniel S Wright
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA
| | - Simranpreet S Saini
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA
| | - Bibiana Onoa
- Howard Hughes Medical Institute University of California Berkeley, Berkeley, CA, 94720, USA
| | - Carlos Bustamante
- Howard Hughes Medical Institute University of California Berkeley, Berkeley, CA, 94720, USA.,Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, USA.,Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Physics, University of California Berkeley, Berkeley, CA, 94720, USA.,Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Jessica R Kramer
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA. .,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, 84102, USA.
| |
Collapse
|
4
|
Gao H, Wang J, Wu H, Xin F, Zhang W, Jiang M, Fang Y. Biofilm-Integrated Glycosylated Membrane for Biosuccinic Acid Production. ACS APPLIED BIO MATERIALS 2021; 4:7517-7523. [PMID: 35006701 DOI: 10.1021/acsabm.1c00764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biofilm-based cell-immobilized fermentation technology is regarded as the technique with the most potential for biobased product (chemicals, biofuelss materials, etc.) production in industry. Glycosylated membrane can mimic natural extracellular matrix (ECM) and improve cell adhesion and biofilm formation based on carbohydrate-microbial lectin interaction. Here, we applied glycosylated membrane with rhamnose modified surface for constructing Actinobacillus succinogenes biofilm and producing biosuccinic acid. Polymer hollow fiber (PHF) membrane surface was first modified by glycosylation based on physical adsorption approach. The approach is simple, green, and suitable for scale-amplification. Then, the microbial biofilm formed dramatically on the modified membrane surface. And for subsequent biosuccinic acid production, the maximum titer of succinic acid reached 67.3 g/L, and the yield was 0.82 g/g. Compared with free cell fermentation, the titer and yield increased by 18% and 9% in this biofilm-based cell-immobilized fermentation system, respectively. Importantly, the production efficiency of biosuccinic acid increased obviously for subsequent biofilm-based cell-immobilized fermentation. In addition, the biofilm-integrated glycosylated membrane showed high reusability for succinic acid production. This result is important for developing biofilms for a wide range of applications in bioproduct (chemicals, biofuels, materials, etc.) production.
Collapse
Affiliation(s)
- Hao Gao
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P.R. China
| | - Jie Wang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P.R. China
| | - Hao Wu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P.R. China
| | - Fengxue Xin
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P.R. China
| | - Wenming Zhang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P.R. China
| | - Min Jiang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P.R. China
| | - Yan Fang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P.R. China
| |
Collapse
|
5
|
Wang J, Wang D, Zhang Y, Dong J. Synthesis and Biopharmaceutical Applications of Sugar-Based Polymers: New Advances and Future Prospects. ACS Biomater Sci Eng 2021; 7:963-982. [PMID: 33523642 DOI: 10.1021/acsbiomaterials.0c01710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The rapid rise in research interest in carbohydrate-based polymers is undoubtedly due to the nontoxic nature of such materials in an in vivo environment and the versatile roles that the polymers can play in cellular functions. Such polymers have served as therapeutic tools for drug delivery, including antigens, proteins, and genes, as well as diagnostic devices. Our focus in the first half of this Review is on synthetic methods based on ring-opening polymerization and enzyme-catalyzed polymerization, along with controlled radical polymerization. In the second half of this Review, sugar-based polymers are discussed on the basis of their remarkable success in competitive receptor binding, as multifunctional nanocarriers of targeting inhibitors for cancer treatment, in genome-editing delivery, in immunotherapy based on endogenous antibody recruitment, and in treatment of respiratory diseases, including influenza A. Particular emphasis is put on the synthesis and biopharmaceutical applications of sugar-based polymers published in the most recent 5 years. A noticeable attribute of carbohydrate-based polymers is that the sugar-receptor interactions can be facilitated by the cooperative effect of multiple sugar units. Their diversified topology and structures will drive the development of new synthetic strategies and bring about important applications, including coronavirus-related drug therapy.
Collapse
Affiliation(s)
- Jie Wang
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province 312000, China
| | - Dong Wang
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province 312000, China
| | - Yixian Zhang
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province 312000, China
| | - Jian Dong
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province 312000, China
| |
Collapse
|
6
|
Zheng L, Luo Y, Chen K, Zhang Z, Chen G. Highly Branched Gradient Glycopolymer: Enzyme-Assisted Synthesis and Enhanced Bacteria-Binding Ability. Biomacromolecules 2020; 21:5233-5240. [DOI: 10.1021/acs.biomac.0c01311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lifang Zheng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Yan Luo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Kui Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Zexin Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
7
|
Apte G, Börke J, Rothe H, Liefeith K, Nguyen TH. Modulation of Platelet-Surface Activation: Current State and Future Perspectives. ACS APPLIED BIO MATERIALS 2020; 3:5574-5589. [PMID: 35021790 DOI: 10.1021/acsabm.0c00822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Modulation of platelet-surface activation is important for many biomedical applications such as in vivo performance, platelet storage, and acceptance of an implant. Reducing platelet-surface activation is challenging because they become activated immediately after short contact with nonphysiological surfaces. To date, controversies and open questions in the field of platelet-surface activation still remain. Here, we review state-of-the-art approaches in inhibiting platelet-surface activation, mainly focusing on modification, patterning, and methodologies for characterization of the surfaces. As a future perspective, we discuss how the combination of biochemical and physiochemical strategies together with the topographical modulations would assist in the search for an ideal nonthrombogenic surface.
Collapse
|
8
|
Ribeiro JPM, Mendonça PV, Coelho JFJ, Matyjaszewski K, Serra AC. Glycopolymer Brushes by Reversible Deactivation Radical Polymerization: Preparation, Applications, and Future Challenges. Polymers (Basel) 2020; 12:E1268. [PMID: 32492977 PMCID: PMC7362234 DOI: 10.3390/polym12061268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022] Open
Abstract
The cellular surface contains specific proteins, also known as lectins, that are carbohydrates receptors involved in different biological events, such as cell-cell adhesion, cell recognition and cell differentiation. The synthesis of well-defined polymers containing carbohydrate units, known as glycopolymers, by reversible deactivation radical polymerization (RDRP) methods allows the development of tailor-made materials with high affinity for lectins because of their multivalent interaction. These polymers are promising candidates for the biomedical field, namely as novel diagnostic disease markers, biosensors, or carriers for tumor-targeted therapy. Although linear glycopolymers are extensively studied for lectin recognition, branched glycopolymeric structures, such as polymer brushes can establish stronger interactions with lectins. This specific glycopolymer topology can be synthesized in a bottlebrush form or grafted to/from surfaces by using RDRP methods, allowing a precise control over molecular weight, grafting density, and brush thickness. Here, the preparation and application of glycopolymer brushes is critically discussed and future research directions on this topic are suggested.
Collapse
Affiliation(s)
- Jessica P. M. Ribeiro
- Department of Chemical Engineering, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; (J.P.M.R.); (J.F.J.C.)
| | - Patrícia V. Mendonça
- Department of Chemical Engineering, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; (J.P.M.R.); (J.F.J.C.)
| | - Jorge F. J. Coelho
- Department of Chemical Engineering, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; (J.P.M.R.); (J.F.J.C.)
| | - Krzysztof Matyjaszewski
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA;
| | - Arménio C. Serra
- Department of Chemical Engineering, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; (J.P.M.R.); (J.F.J.C.)
| |
Collapse
|