1
|
Grabner D, Pickett PD, McAfee T, Collins BA. Molecular Weight-Independent "Polysoap" Nanostructure Characterized via In Situ Resonant Soft X-ray Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7444-7455. [PMID: 38552143 DOI: 10.1021/acs.langmuir.3c03897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Studying polymer micelle structure and loading dynamics under environmental conditions is critical for nanocarrier applications but challenging due to a lack of in situ nanoprobes. Here, the structure and loading of amphiphilic polyelectrolyte copolymer micelles, formed by 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and n-dodecyl acrylamide (DDAM), were investigated using a multimodal approach centered around in situ resonant soft X-ray scattering (RSoXS). We observe aqueous micelles formed from polymers of wide-ranging molecular weights and aqueous concentrations. Despite no measurable critical micelle concentration (CMC), structural analyses point toward multimeric structures for most molecular weights, with the lowest molecular weight micelles containing mixed coronas and forming loose micelle clusters that enhance hydrocarbon uptake. The sizes of the micelle substructures are independent of both the concentration and molecular weight. Combining these results with a measured molecular weight-invariant surface charge and zeta potential strengthens the link between the nanoparticle size and ionic charge in solution that governs the polysoap micelle structure. Such control would be critical for nanocarrier applications, such as drug delivery and water remediation.
Collapse
Affiliation(s)
- Devin Grabner
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
| | - Phillip D Pickett
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Terry McAfee
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Brian A Collins
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
2
|
Wells KM, Ciftci Y, Peddinti BST, Ghiladi RA, Vediyappan G, Spontak RJ, Govind R. Preventing the spread of life-threatening gastrointestinal microbes on the surface of a continuously self-disinfecting block polymer. J Colloid Interface Sci 2023; 652:718-726. [PMID: 37611471 DOI: 10.1016/j.jcis.2023.08.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
Highly persistent, drug-resistant and transmissible healthcare pathogens such as Clostridioides difficile (C. difficile) and Candida auris (C. auris) are responsible for causing antibiotic-associated fatal diarrhea and invasive candidiasis, respectively. In this study, we demonstrate that these potentially lethal gastrointestinal microbes can be rapidly inactivated on the solid surface of a self-disinfecting anionic block polymer that inherently generates a water surface layer that is highly acidic (pH < 1) upon hydration. Due to thermodynamic incompatibility between its chemical sequences, the polymer spontaneously self-organizes into a nanostructure that enables proton migration from the interior of a film to the surface via contiguous nanoscale hydrophilic channels, as discerned here by scanning electron and atomic force microscopies, as well as X-ray photoelectron spectroscopy. Here, we report that two strains of C. difficile in the vegetative state and two species of Candida, Candida albicans (C. albicans) and C. auris, are, in most cases, inactivated to the limit of minimum detection. Corresponding electron and optical microscopy images reveal that, upon exposure to the hydrated polymer, the outer microbial membranes display evidence of damage and intracellular material is expelled. Combined with our previous studies of rapid bacterial and viral inactivation, these antimicrobial results are highly encouraging and, if translatable to clinical conditions in the form of self-standing polymer films or coatings, are expected to benefit the welfare of patients in healthcare facilities by continuously preventing the spread of such potentially dangerous microbes.
Collapse
Affiliation(s)
- Kacie M Wells
- Fiber & Polymer Science Program, North Carolina State University, Raleigh, NC 27695, United States
| | - Yusuf Ciftci
- Division of Biology, Kansas State University, Manhattan, KS 66506, United States
| | - Bharadwaja S T Peddinti
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | | | - Richard J Spontak
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Department of Materials Science & Engineering, North Carolina State University, Raleigh, NC 27695, United States.
| | - Revathi Govind
- Division of Biology, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
3
|
Vaskan IS, Prikhodko AT, Petoukhov MV, Shtykova EV, Bovin NV, Tuzikov AB, Oleinikov VA, Zalygin AV. Assessment of core-shell nanoparticles surface structure heterogeneity by SAXS contrast variation and ab initio modeling. Colloids Surf B Biointerfaces 2023; 224:113183. [PMID: 36764203 DOI: 10.1016/j.colsurfb.2023.113183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
For the biomedical applications of nanoparticles, the study of their structure is a major step towards understanding the mechanisms of their interaction with biological environment. Detailed structural analysis of particles' surface is vital for rational design of drug delivery systems. In particular, for core-shell or surface-modified nanoparticles surface structure can be described in terms of shell coating uniformity and shell thickness uniformity around the nanoparticle core. Taken together, these terms can be used to indicate degree of heterogeneity of nanoparticle surface structure. However, characterization of nanoparticle surface structure under physiological conditions is challenging due to limitations of experimental techniques. In this paper, we apply SAXS contrast variation combined with ab initio bead modeling for this purpose. Approach is based on the fact that nanoparticles under study are produced by self-assembly of phospholipid-conjugated molecules that possess moieties with significantly different electron densities enabling SAXS technique to be used to distinguish nanoparticle shell and study its structure. Ab initio single phase and ab initio multiphase modeling based on SAXS curve of nanoparticles in phosphate buffer solution allowed to reconstruct nanoparticle shell coating and assess its uniformity, while serial nanoparticle reconstructions from solutions with gradually increased solvent electron densities revealed relative shell coating thickness around nanoparticle core. Nanoparticle shell structure representation was verified by molecular dynamics simulation and derived full-atom nanoparticle shell structure showed good agreement with SAXS-derived representation. Obtained data indicate that studied nanoparticles exhibit highly heterogeneous surface structure.
Collapse
Affiliation(s)
- I S Vaskan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - A T Prikhodko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; National Research Nuclear University Moscow Engineering Physics Institute, Moscow 115409, Russia
| | - M V Petoukhov
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of the Russian Academy of Sciences, Moscow 119333, Russia; A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Moscow 119071, Russia
| | - E V Shtykova
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of the Russian Academy of Sciences, Moscow 119333, Russia
| | - N V Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - A B Tuzikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - V A Oleinikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; National Research Nuclear University Moscow Engineering Physics Institute, Moscow 115409, Russia
| | - A V Zalygin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; National Research Nuclear University Moscow Engineering Physics Institute, Moscow 115409, Russia.
| |
Collapse
|
4
|
Barclay A, Tidemand Johansen N, Tidemand FG, Arleth L, Pedersen MC. Global fitting of multiple data frames from SEC-SAXS to investigate the structure of next-generation nanodiscs. Acta Crystallogr D Struct Biol 2022; 78:483-493. [PMID: 35362471 PMCID: PMC8972807 DOI: 10.1107/s2059798322001838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/16/2022] [Indexed: 11/10/2022] Open
Abstract
The combination of online size-exclusion chromatography and small-angle X-ray scattering (SEC-SAXS) is rapidly becoming a key technique for structural investigations of elaborate biophysical samples in solution. Here, a novel model-refinement strategy centred around the technique is outlined and its utility is demonstrated by analysing data series from several SEC-SAXS experiments on phospholipid bilayer nanodiscs. Using this method, a single model was globally refined against many frames from the same data series, thereby capturing the frame-to-frame tendencies of the irradiated sample. These are compared with models refined in the traditional manner, in which refinement is based on the average profile of a set of consecutive frames from the same data series without an in-depth comparison of individual frames. This is considered to be an attractive model-refinement scheme as it considerably lowers the total number of parameters refined from the data series, produces tendencies that are automatically consistent between frames, and utilizes a considerably larger portion of the recorded data than is often performed in such experiments. Additionally, a method is outlined for correcting a measured UV absorption signal by accounting for potential peak broadening by the experimental setup.
Collapse
Affiliation(s)
- Abigail Barclay
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen E, Denmark
| | - Nicolai Tidemand Johansen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen E, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | | | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen E, Denmark
| | - Martin Cramer Pedersen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen E, Denmark
| |
Collapse
|
5
|
McAfee T, Ferron T, Cordova IA, Pickett PD, McCormick CL, Wang C, Collins BA. Label-free characterization of organic nanocarriers reveals persistent single molecule cores for hydrocarbon sequestration. Nat Commun 2021; 12:3123. [PMID: 34035289 PMCID: PMC8149835 DOI: 10.1038/s41467-021-23382-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/23/2021] [Indexed: 02/04/2023] Open
Abstract
Self-assembled molecular nanostructures embody an enormous potential for new technologies, therapeutics, and understanding of molecular biofunctions. Their structure and function are dependent on local environments, necessitating in-situ/operando investigations for the biggest leaps in discovery and design. However, the most advanced of such investigations involve laborious labeling methods that can disrupt behavior or are not fast enough to capture stimuli-responsive phenomena. We utilize X-rays resonant with molecular bonds to demonstrate an in-situ nanoprobe that eliminates the need for labels and enables data collection times within seconds. Our analytical spectral model quantifies the structure, molecular composition, and dynamics of a copolymer micelle drug delivery platform using resonant soft X-rays. We additionally apply this technique to a hydrocarbon sequestrating polysoap micelle and discover that the critical organic-capturing domain does not coalesce upon aggregation but retains distinct single-molecule cores. This characteristic promotes its efficiency of hydrocarbon sequestration for applications like oil spill remediation and drug delivery. Such a technique enables operando, chemically sensitive investigations of any aqueous molecular nanostructure, label-free.
Collapse
Affiliation(s)
- Terry McAfee
- grid.30064.310000 0001 2157 6568Department of Physics and Astronomy, Washington State University, Pullman, WA USA ,grid.184769.50000 0001 2231 4551Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, NC USA
| | - Thomas Ferron
- grid.30064.310000 0001 2157 6568Department of Physics and Astronomy, Washington State University, Pullman, WA USA
| | - Isvar A. Cordova
- grid.184769.50000 0001 2231 4551Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, NC USA
| | - Phillip D. Pickett
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS USA
| | - Charles L. McCormick
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS USA
| | - Cheng Wang
- grid.184769.50000 0001 2231 4551Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, NC USA
| | - Brian A. Collins
- grid.30064.310000 0001 2157 6568Department of Physics and Astronomy, Washington State University, Pullman, WA USA
| |
Collapse
|
6
|
Senanayake M, Aryal D, Grest GS, Perahia D. Interfacial Response and Structural Adaptation of Structured Polyelectrolyte Thin Films. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manjula Senanayake
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Dipak Aryal
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Gary S. Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Dvora Perahia
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
7
|
Jung FA, Posselt D, Smilgies DM, Panteli PA, Tsitsilianis C, Patrickios CS, Papadakis CM. Charge-Dependent Microphase Separation in Thin Films from a Multiresponsive Pentablock Quaterpolymer: A GISAXS Investigation. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Florian A. Jung
- Fachgebiet Physik weicher Materie, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Dorthe Posselt
- IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, 4000 Roskilde, Denmark
| | - Detlef-M. Smilgies
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14850, United States
| | - Panayiota A. Panteli
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | | | - Costas S. Patrickios
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Christine M. Papadakis
- Fachgebiet Physik weicher Materie, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
8
|
|