1
|
Liu S, Hu G, Wang Y, Liu S, Ye Q, Zhou F, Liu W. Hybrid Carbon Nanospheres with Encapsulated (Bi)Metallic Nanocrystals as Lubricant Additives for Antiwear and Friction Reduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3911-3921. [PMID: 38197650 DOI: 10.1021/acsami.3c17100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Herein, the novel core-shell organo-inorganic hybrid carbon nanospheres with encapsulated ultrafine bimetal nanocrystals were successfully prepared by a one-pot domino drive synthesis combined with postcarbonization. The excellent properties of the metals such as high strength and thermal conductivity are retained, and the poor dispersion of the metal in the oil could be improved by encapsulating the metal in organic-inorganic hybrid carbon nanospheres. The vanadium and wolframium nanocrystals embedded in nitrogen-doped carbon nanospheres (V/W@NCNs) manifested remarkable oil dispersity on account of the lipophilic organic phase of the carbon shell. It is worth noting that the as-obtained V/W@NCNs display better tribological properties compared with the base oil, such as a higher extreme pressure of 1250 N, a lower friction coefficient of about 0.09, and a significant reduction in wear volume of 91.5%, which are attributed to the robust protective film that was formed on the surface of the friction pair through mechanical deposition and physical and tribochemical reaction during the friction process.
Collapse
Affiliation(s)
- Sha Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Guanghao Hu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yixin Wang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Qian Ye
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Feng Zhou
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Weimin Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
2
|
Rajeeve AD, Yamuna R, Vinoba M, Bhagiyalakshmi M. β-Cyclodextrin-Stabilized CuO/MXene Nanocomposite as an Electrode Material for High-Performance Supercapacitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38014812 DOI: 10.1021/acs.langmuir.3c02140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Supercapacitors are the best energy storage systems due to their high power density, quick charge/discharge rate, and long-term reliability. In this study, β-cyclodextrin-stabilized CuO nanoparticles (CuO@βCD NPs) were synthesized through a simple reduction method and anchored on the surface of MXene nanosheets in three different proportions (1:1, 4:1, and 1:4) to obtain CuO@βCD/MXene nanocomposites through the wet-impregnation method. The formation of CuO@βCD NPs and their physicochemical characteristics were verified by XRD, XPS, FE-SEM, and HR-TEM analysis. The actual focus is on the evaluation of the electrochemical performances of CuO@βCD, MXene, and CuO@βCD/MXene nanocomposites for supercapacitor applications. The cyclic voltammetry and galvanostatic charge-discharge analysis revealed the pseudocapacitance and an improved specific capacitance of 1693.43 F g-1 at 0.90 A g-1 for the CuO@βCD/MXene (1:1) nanocomposite. The electrochemical impedance analysis displays superior electrical conductivity with a low charge transfer resistance value on incorporating CuO@βCD between the MXene layers. Furthermore, the CuO@βCD/MXene (1:1) nanocomposite exhibited improved long-term cycling stability by retaining 86% of its initial specific capacitance even after the 10,000th cycle at the current density of 4.54 A g-1. Based on the electrochemical performance, the CuO@βCD/MXene (1:1) nanocomposite proves its suitability as an electrode material for supercapacitor application with long-term cycling stability and rate capability.
Collapse
Affiliation(s)
- Anakha D Rajeeve
- Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Bio-materials Chemistry Research Laboratory, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Ramasamy Yamuna
- Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Bio-materials Chemistry Research Laboratory, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
| | - Mari Vinoba
- Petroleum Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | | |
Collapse
|
3
|
Guo R, Yang Z, Pan X, Ma X, Qiu Y, Li J. NiS Nanosheets Decorated on Hollow Carbon Spheres from Liquefied Wood for Supercapacitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6924-6931. [PMID: 37129080 DOI: 10.1021/acs.langmuir.3c00627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Carbon-based supercapacitors with high performance have a wide foreground among various energy storage devices. In this work, wood-based hollow carbon spheres (WHCS) were prepared from liquefied wood through the processes of emulsification, curing, carbonization, and activation. Then, the hydrodeposition method was used to introduce nickel sulfide (NiS) to the surface of the microspheres, obtaining NiS/WHCS as the supercapacitor electrode. The results show that NiS/WHCS microspheres exhibited a core-shell structure and flower-like morphology with a specific surface (307.55 m2 g-1) and a large total pore volume (0.14 cm3 g-1). Also, the capacitance could be up to 1533.6 F g-1 at a current density of 1 A g-1. In addition, after 1000 charge/discharge cycles, the specific capacitance remained at 72.8% at the initial current density of 5 A g-1. Hence, NiS/WHCS with excellent durability and high specific capacitance is a potential candidate for electrode materials.
Collapse
Affiliation(s)
- Ranran Guo
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Zhaozhao Yang
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Xiaosen Pan
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Xiaojun Ma
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Yujuan Qiu
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Jie Li
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
| |
Collapse
|
4
|
Kitamoto Y, Cao KLA, Le PH, Abdillah OB, Iskandar F, Ogi T. A Sustainable Approach for Preparing Porous Carbon Spheres Derived from Kraft Lignin and Sodium Hydroxide as Highly Packed Thin Film Electrode Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3540-3552. [PMID: 35258982 DOI: 10.1021/acs.langmuir.1c03489] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A green synthetic strategy to design biomass-derived porous carbon electrode materials with precisely tailored structure and morphology has always been a challenging goal because these materials can fulfill the demands of next-generation supercapacitors and other electrochemical devices. Potassium hydroxide (KOH) is extensively utilized as an activator since it can produce porous carbon with high specific surface area and well-developed porous channels. The exploitation of sodium hydroxide (NaOH) as an activating agent is less referenced in the literature, although it offers some advantages over KOH in terms of low cost, less corrosiveness, and simple handling procedure, all of which are appealing particularly from an industrial viewpoint. The motivation for this present study is to fabricate porous carbon spheres in a sustainable manner via a spray drying approach followed by a carbonization process, using Kraft lignin as the carbon precursor and NaOH as an alternative activation agent instead of the high-cost and high-corrosive KOH for the first time. The structure of carbon particles can be accurately transitioned from a compact to hollow structure, and the surface textural properties can be easily tuned by altering the NaOH concentration. The obtained porous carbon spheres were applied as highly packed thin film electrode materials for supercapacitor devices. The specific capacitance value of porous carbon spheres with a highly compact structure (high packing density) is 66.5 F g-1, which is higher than that of commercial activated carbon and other biomass-derived carbon. This work provides a green processing for producing low-cost and environment-friendly porous carbon spheres from abundant Kraft lignin and important insight for selecting NaOH as an activator to tailor the morphology and structure, which represents an economical and sustainable approach for energy storage devices.
Collapse
Affiliation(s)
- Yasuhiko Kitamoto
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Kiet Le Anh Cao
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Phong Hoai Le
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Oktaviardi Bityasmawan Abdillah
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, West Java, Indonesia
| | - Ferry Iskandar
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, West Java, Indonesia
| | - Takashi Ogi
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
5
|
Tao Q, Zhu Z, Ye S, Lin G, Chen H, Tu Y, Bai G, Zhang L, Yang X. Surface Polymerization and Controlled Pyrolysis: Tailorable Synthesis of Bumpy Hollow Carbon Spheres for Energy Storage. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4007-4015. [PMID: 33750135 DOI: 10.1021/acs.langmuir.1c00307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Architectural design of hollow carbon spheres (HCSs) plays a vital role in improving their performance and expanding applications. The tailorable synthesis of bumpy or asymmetric HCSs with a refined structure remains a challenge. Herein, bumpy HCSs (BHCSs) and bumpy concave HCSs (BCHCSs) have been engineered. The synthesis involves the formation of a core/shell precursor via the surface polymerization of pyrrole monomers on polystyrene nanoparticles, followed by the controlled pyrolysis process under different conditions. In comparison with HCSs, the concave hollow structure can reduce the excessive interior cavity and maintain prevalent merits of hollow structures; the bumpy shell can improve the surface area and number of active sites, thus improving the kinetics as energy storage devices. As a result, among BCHCSs, BHCSs, and HCSs, BCHCSs exhibit optimal electrochemical performance. The lithium-ion hybrid capacitors employing BCHCSs as an anode can deliver an energy density of 0.2182 kW h kg-1 at a power density of 0.2235 kW kg-1. Overall, this study provides an innovative design and strategy for constructing unique carbon nano-architectures for energy storage.
Collapse
Affiliation(s)
- Qianyi Tao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhifeng Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Sunjie Ye
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Gaojian Lin
- Department of Mechanics Engineering, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hui Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yingfeng Tu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Guanghui Bai
- Science and Technology on Space Physics Laboratory, No. 1, Nandahongmen Road, Fengtai District, Beijing 100076, China
| | - Lu Zhang
- Science and Technology on Space Physics Laboratory, No. 1, Nandahongmen Road, Fengtai District, Beijing 100076, China
| | - Xiaoming Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
6
|
Xu X, Qiu Y, Wu J, Ding B, Liu Q, Jiang G, Lu Q, Wang J, Xu F, Wang H. Porous nitrogen-enriched hollow carbon nanofibers as freestanding electrode for enhanced lithium storage. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.09.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Emran MY, Talat E, El-Safty SA, Shenashen MA, Saad EM. Influence of hollow sphere surface heterogeneity and geometry of N-doped carbon on sensitive monitoring of acetaminophen in human fluids and pharmaceutical products. NEW J CHEM 2021; 45:5452-5462. [DOI: 10.1039/d0nj05442a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A sensitive and selective acetaminophen sensor assay was designed based on N-HCCS. The surface morphology, and composition of open hollow conjugated spheres of N-HCCS resulted in facile AC diffusion/loading and electrocatalytic oxidation.
Collapse
Affiliation(s)
- Mohammed Y. Emran
- National Institute for Materials Science (NIMS)
- Ibaraki-ken
- Japan
- Department of Chemistry
- Faculty of Science
| | - Eslam Talat
- Department of Chemistry
- Faculty of Science
- Suez University
- Suez
- Egypt
| | | | | | - Eman M. Saad
- Department of Chemistry
- Faculty of Science
- Suez University
- Suez
- Egypt
| |
Collapse
|
8
|
Wang G, Yu M, Feng X. Carbon materials for ion-intercalation involved rechargeable battery technologies. Chem Soc Rev 2021; 50:2388-2443. [DOI: 10.1039/d0cs00187b] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of carbon electrode materials for rechargeable batteries is reviewed from the perspective of structural features, electrochemistry, and devices.
Collapse
Affiliation(s)
- Gang Wang
- Department of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (cfaed)
- Technische Universität Dresden
- 01062 Dresden
- Germany
| | - Minghao Yu
- Department of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (cfaed)
- Technische Universität Dresden
- 01062 Dresden
- Germany
| | - Xinliang Feng
- Department of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (cfaed)
- Technische Universität Dresden
- 01062 Dresden
- Germany
| |
Collapse
|
9
|
Liu Q, Yang S, Repich H, Zhai Y, Xu X, Liang Y, Li H, Wang H, Xu F. Porous Functionalized Covalent-Triazine Frameworks for Enhanced Adsorption Toward Polysulfides in Li-S Batteries and Organic Dyes. Front Chem 2020; 8:584204. [PMID: 33344414 PMCID: PMC7738625 DOI: 10.3389/fchem.2020.584204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/05/2020] [Indexed: 11/21/2022] Open
Abstract
The incorporation of functional building blocks to construct functionalized and highly porous covalent triazine frameworks (CTFs) is essential to the emerging adsorptive-involved field. Herein, a series of amide functionalized CTFs (CTF-PO71) have been synthesized using a bottom-up strategy in which pigment PO71 with an amide group is employed as a monomer under ionothermal conditions with ZnCl2 as the solvent and catalyst. The pore structure can be controlled by the amount of ZnCl2 to monomer ratio. Benefitting from the highly porous structure and amide functionalities, CTF-PO71, as a sulfur cathode host, simultaneously demonstrates physical confinement and chemical anchoring of sulfur species, thus leading to superior capacity, cycling stability, and rate capability in comparison to unfunctionalized CTF. Meanwhile, as an adsorbent of organic dye molecules, CTF-PO71 was demonstrated to exhibit strong chemical interactions with dye molecules, facilitating adsorption kinetics and thereby promoting the adsorption rate and capacity. Furthermore, the dynamic adsorption experiments of organic dyes from solutions showed selectivity/priority of CTF-PO71s for specific dye molecules.
Collapse
Affiliation(s)
- Qianhui Liu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, China
| | - Shuhao Yang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, China
| | - Hlib Repich
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, China
| | - Yixuan Zhai
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, China
| | - Xiaosa Xu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, China
| | - Yeru Liang
- College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Hejun Li
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, China
| | - Hongqiang Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, China
| | - Fei Xu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, China
| |
Collapse
|
10
|
Zhang W, Yang C, Ding B, Peng J, Xu F, Zheng M, Hu H, Xiao Y, Liu Y, Liang Y. A self-crosslinking procedure to construct yolk–shell Au@microporous carbon nanospheres for lithium–sulfur batteries. Chem Commun (Camb) 2020; 56:1215-1218. [DOI: 10.1039/c9cc07625e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient self-crosslinking procedure to reasonably construct porous shells is reported for the synthesis of yolk–shell Au@microporous carbon nanospheres.
Collapse
|