1
|
Wen L, Liu B. Kinetic pathways of sub-bandgap induced electron transfer in Ag/TiO 2 and the effect on isopropanol dehydrogenation under gaseous conditions. Phys Chem Chem Phys 2024; 26:11113-11125. [PMID: 38530657 DOI: 10.1039/d3cp05897b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Electron transfer and its kinetics play a major role in the photocatalysis of metal/semiconductor systems. Using in situ photoconductances, in situ photoabsorption, and photoinduced spectroscopic techniques, the present research aimed to gain a deep insight into electron transfer pathways and their kinetics for Ag/TiO2 systems under sub-bandgap light illumination and gaseous conditions. The results revealed that electrons generated in TiO2 can transfer to Ag nanoparticles at fast rates, and plasmon-generated electrons in Ag nanoparticles can also transfer to TiO2. However, it was found that plasmon-assisted hot electron transfer efficiency is much lower than the electron transition from the valence band to the conduction band of TiO2. Rather than plasmonic active spots, the results showed that Ag nanoparticles acted as co-catalyst sites bridging electron transfer to recombination in a methanol-containing N2 atmosphere. As a result, photocatalytic isopropanol dehydrogenation was decreased. Independent of Ag decorations, it was also indicated that isopropanol dehydrogenation mainly occurred over TiO2 surfaces; therefore, Ag nanoparticles did not increase photocatalytic activities. Our results may provide a different viewpoint on sub-bandgap light-induced Ag/TiO2 photocatalysis under gaseous conditions; this may also facilitate the understanding of the photocatalytic mechanism of metal/semiconductor systems.
Collapse
Affiliation(s)
- Liping Wen
- School of Environmental & Biological Engineering, Wuhan Technology and Business University, Wuhan city, Hubei province, 430065, P. R. China
| | - Baoshun Liu
- State Key laboratory of silicate Materials for Architectures, Wuhan University of Technology, Wuhan City, Hubei Province, P. R. China.
| |
Collapse
|
2
|
Han Y, Li T, Zhang Q, Guo X, Jiao T. Influence of an External Electric Field on Electronic and Optical Properties of a g-C 3N 4/TiO 2 Heterostructure: A First-Principles Perspective. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16035-16047. [PMID: 37910596 DOI: 10.1021/acs.langmuir.3c02169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
In this study, calculations based on density functional theory (DFT) were utilized to examine how electrostatic fields affect the electrical and optical characteristics of g-C3N4/TiO2 heterostructures. The binding energy, density of states, difference in charge density, and optical absorption spectra of the heterostructure were calculated and analyzed to reveal the mechanism of the influence of the external electric field (EF) on the properties of the heterostructure. The results show that the binding energy of the heterogeneous structure is reduced due to the imposed electric field in X- and Y-directions, and the optical absorption spectrum is slightly enhanced, but the BG and charge transfer number are basically unchanged. On the contrary, applying the electric field in the Z-direction increases the binding energy of the heterogeneous structure, decreases the BG, increases the number of charge transfers, and red shifts the optical absorption spectrum, which improves the photocatalytic ability of the g-C3N4/TiO2 heterostructure.
Collapse
Affiliation(s)
- Yong Han
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
| | - Tianyu Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
| | - Qingrui Zhang
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Xiaoqiang Guo
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
| |
Collapse
|
3
|
Ghorai N, Ghosh HN. Chemical Interface Damping in Nonstoichiometric Semiconductor Plasmonic Nanocrystals: An Effect of the Surrounding Environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5339-5350. [PMID: 35491746 DOI: 10.1021/acs.langmuir.2c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Semiconductor plasmonic nanocrystals (NCs) have been utilized for an enormous number of plasmon-enhanced spectroscopic and energy conversion applications. Plasmonic NCs are extremely high light absorbers, and optical properties can be easily manipulated across the UV-vis-NIR spectrum region by changing mere chemical compositions and the surrounding environment of the NCs. This feature article focuses on reassessing plasmon dynamics by changing the interface composition between NCs and the surrounding medium to ascertain the damping contribution from chemical interface damping (CID). Also, this feature article deciphers a fundamental understanding of hot-carrier relaxation and extraction from plasmonic materials. On the route to determining the different relaxation dynamics of nonstoichiometric Cu2-xS/Se NCs, we have employed a transient ultrafast pump-probe broadband spectrometer. First, we have described the ultrafast plasmon relaxation dynamics of nonstoichiometric Cu2-xS NCs by varying the copper to sulfur ratio, and then we carefully compare how two surface ligands (oleylamine and 3-mercaptopropionic acid) lead to significantly different transient kinetics of the same plasmonic (Cu2-xSe) NCs because of different capping agents. Along with this, we have described the impact of a molecular adsorbate (methylene blue) on ultrafast plasmon relaxation dynamics of the nonstoichiometric Cu2-xSe NCs system. Finally, the chemical interface damping effect has been compared in the Cu2-xS NCs system after capping with two distinct capping ligands: oleylamine and oleic acid. For the proof of concept, plasmonic thin-film devices were fabricated and exhibited higher conductivity/photoconductivity performance in oleic acid-capped NCs because of a deprotonated carboxyl functional group. We have also introduced a model and mechanism of chemical interface damping in a nonstoichiometric plasmonic semiconductor (Cu2-xS/Se) NC system. This feature article highlights the importance of the surface functionalization of nonstoichiometric plasmonic semiconductors to develop new advanced semiconductor-based devices such as infrared photodetectors, plasmonic solar cells, and efficient NIR phototransistors.
Collapse
Affiliation(s)
- Nandan Ghorai
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Hirendra N Ghosh
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
4
|
Kumar A, Choudhary P, Kumar A, Camargo PHC, Krishnan V. Recent Advances in Plasmonic Photocatalysis Based on TiO 2 and Noble Metal Nanoparticles for Energy Conversion, Environmental Remediation, and Organic Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2101638. [PMID: 34396695 DOI: 10.1002/smll.202101638] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/06/2021] [Indexed: 05/24/2023]
Abstract
Plasmonic photocatalysis has emerged as a prominent and growing field. It enables the efficient use of sunlight as an abundant and renewable energy source to drive a myriad of chemical reactions. For instance, plasmonic photocatalysis in materials comprising TiO2 and plasmonic nanoparticles (NPs) enables effective charge carrier separation and the tuning of optical response to longer wavelength regions (visible and near infrared). In fact, TiO2 -based materials and plasmonic effects are at the forefront of heterogeneous photocatalysis, having applications in energy conversion, production of liquid fuels, wastewater treatment, nitrogen fixation, and organic synthesis. This review aims to comprehensively summarize the fundamentals and to provide the guidelines for future work in the field of TiO2 -based plasmonic photocatalysis comprising the above-mentioned applications. The concepts and state-of-the-art description of important parameters including the formation of Schottky junctions, hot electron generation and transfer, near field electromagnetic enhancement, plasmon resonance energy transfer, scattering, and photothermal heating effects have been covered in this review. Synthetic approaches and the effect of various physicochemical parameters in plasmon-mediated TiO2 -based materials on performances are discussed. It is envisioned that this review may inspire and provide insights into the rational development of the next generation of TiO2 -based plasmonic photocatalysts with target performances and enhanced selectivities.
Collapse
Affiliation(s)
- Ajay Kumar
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Priyanka Choudhary
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Ashish Kumar
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Pedro H C Camargo
- University of Helsinki, Department of Chemistry, A.I. Virtasen aukio 1, Helsinki, Finland
| | - Venkata Krishnan
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
5
|
Li L, Yan L, Wu Z, Zhou X, Zhao X, Liu B. Plasmon-assisted facile selective gaseous isopropanol dehydrogenation over Ag nanocubes. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01454d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The present research showed that the non-heating effect of plasmonic absorption caused a great increase in the acetone dehydrogenation over Ag nanocubes in high selectivity at low temperatures.
Collapse
Affiliation(s)
- Liuyang Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan city, Hubei Province 430070, People's Republic of China
| | - Ling Yan
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan city, Hubei Province 430070, People's Republic of China
| | - Zhizhou Wu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan city, Hubei Province 430070, People's Republic of China
| | - Xuedong Zhou
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan city, Hubei Province 430070, People's Republic of China
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan city, Hubei Province 430070, People's Republic of China
| | - Baoshun Liu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan city, Hubei Province 430070, People's Republic of China
| |
Collapse
|
6
|
Guo Y, Zou Y, Jiang J. Plasmonic-redox controlled atom transfer radical polymerization. Chem Commun (Camb) 2021; 57:8766-8769. [PMID: 34378582 DOI: 10.1039/d1cc03179a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plasmonic-ATRP has been developed in which Cu(i) species are (re)generated via photo-redox reactions both directly by hot electrons and indirectly by hot holes, in which the polymerization degree and molecular weight can be regulated by controlling the rate of plasmonic hot carrier extraction.
Collapse
Affiliation(s)
- Yuyang Guo
- Department of Polymer Materials, College of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | | | | |
Collapse
|
7
|
Fan W, Li Y, Wang C, Duan Y, Huo Y, Januszewski B, Sun M, Huo M, Elimelech M. Enhanced Photocatalytic Water Decontamination by Micro-Nano Bubbles: Measurements and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7025-7033. [PMID: 33944552 DOI: 10.1021/acs.est.0c08787] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Despite recent advancements in photocatalysis enabled by materials science innovations, the application of photocatalysts in water treatment is still hampered due to low overall efficiency. Herein, we present a TiO2 photocatalytic process with significantly enhanced efficiency by the introduction of micro-nano bubbles (MNBs). Notably, the removal rate of a model organic contaminant (methylene blue, MB) in an air MNB-assisted photocatalytic degradation (PCD) process was 41-141% higher than that obtained in conventional macrobubble (MaB)-assisted PCD under identical conditions. Experimental observations and supporting mechanistic modeling suggest that the enhanced photocatalytic degradation is attributed to the combined effects of increased dissolution of oxygen, improved colloidal stability and dispersion of the TiO2 nanocatalysts, and interfacial photoelectric effects of TiO2/MNB suspensions. The maximum dissolved oxygen (DO) concentration of the MNB suspension (i.e., 11.7 mg/L) was 32% higher than that of an MaB-aerated aqueous solution (i.e., 8.8 mg/L), thus accelerating the hole oxidation of H2O on TiO2. We further confirmed that the MNBs induced unique light-scattering effects, consequently increasing the optical path length in the TiO2/MNB suspension by 7.6%. A force balance model confirmed that a three-phase contact was formed on the surface of the bubble-TiO2 complex, which promoted high complex stability and PCD performance. Overall, this study demonstrates the enhanced photocatalytic water decontamination by MNBs and provides the underlying mechanisms for the process.
Collapse
Affiliation(s)
- Wei Fan
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yuhang Li
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chunliang Wang
- School of Physics, Northeast Normal University, Changchun 130024, China
| | - Yutong Duan
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yang Huo
- School of Physics, Northeast Normal University, Changchun 130024, China
| | - Brielle Januszewski
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Meng Sun
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Mingxin Huo
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| |
Collapse
|
8
|
Zhang M, Arif M, Hua Y, Qiu B, Mao Y, Liu X. Direct Z-scheme α-MnO 2@MnIn 2S 4 hierarchical photocatalysts with atomically defined junctions for improved photocatalytic activities. NANOSCALE ADVANCES 2021; 3:812-822. [PMID: 36133852 PMCID: PMC9417498 DOI: 10.1039/d0na00848f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/03/2020] [Indexed: 05/31/2023]
Abstract
The use of semiconductor photocatalysts to generate electrons with efficient reducing capability for organic photoreduction synthesis and the removal of harmful substances has become a hotspot in the field of green chemistry research. In this work, α-MnO2 nanocubes and α-MnO2@MnIn2S4 hybrid photocatalysts with a core-shell structure were synthesized successively by a two-step method. XRD and XPS verified the coexistence of the two substances (α-MnO2 and MnIn2S4) in hybrid systems. According to the SEM and TEM characterization, it is clearly seen that MnIn2S4 nanosheets grow on α-MnO2 nanocubes to form a hierarchical structure. Furthermore, HRTEM showed that the interface contact between α-MnO2 and MnIn2S4 resulted in an atomically defined junction. The photocatalytic performance of the composite catalyst was evaluated by reducing 4-nitroaniline to 4-phenylenediamine and Cr(vi) to Cr(iii), respectively. The results show that the catalytic activity of the composite material is effectively improved compared to that of the single components. The Z-scheme electron transport mechanism was proved by ultraviolet-visible diffuse reflectance spectroscopy, valence band XPS, energy band structure calculation and active species detection experiments. The constructed Z-scheme hierarchical α-MnO2@MnIn2S4 system with an atomically defined junction can improve the redox performance of semiconductors for organic synthesis and environmental remediation.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Education Ministry for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology Nanjing 210094 Jiangsu Province China
| | - Muhammad Arif
- Key Laboratory of Education Ministry for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology Nanjing 210094 Jiangsu Province China
| | - Yuxiang Hua
- Key Laboratory of Education Ministry for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology Nanjing 210094 Jiangsu Province China
| | - Bo Qiu
- Key Laboratory of Education Ministry for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology Nanjing 210094 Jiangsu Province China
| | - Yue Mao
- Key Laboratory of Education Ministry for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology Nanjing 210094 Jiangsu Province China
| | - Xiaoheng Liu
- Key Laboratory of Education Ministry for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology Nanjing 210094 Jiangsu Province China
| |
Collapse
|
9
|
Enhanced Hydrogen Production from Ethanol Photoreforming by Site-Specific Deposition of Au on Cu2O/TiO2 p-n Junction. Catalysts 2020. [DOI: 10.3390/catal10050539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hydrogen production by photoreforming of biomass-derived ethanol is a renewable way of obtaining clean fuel. We developed a site-specific deposition strategy to construct supported Au catalysts by rationally constructing Ti3+ defects inTiO2 nanorods and Cu2O-TiO2 p-n junction across the interface of two components. The Au nanoparticles (~2.5 nm) were selectively anchored onto either TiO2 nanorods (Au@TiO2/Cu2O) or Cu2O nanocubes (Au@Cu2O/TiO2) or both TiO2 and Cu2O (Au@TiO2/Cu2O@Au) with the same Au loading. The electronic structure of supported Au species was changed by forming Au@TiO2 interface due to the adjacent Ti3+ defects and the associated oxygen vacancies while unchanged in Au@Cu2O/TiO2 catalyst. The p-n junction of TiO2/Cu2O promoted charge separation and transfer across the junction. During ethanol photoreforming, Au@TiO2/Cu2O catalyst possessing both the Au@TiO2 interface and the p-n junction showed the highest H2 production rate of 8548 μmol gcat−1 h−1 under simulated solar light, apparently superior to both Au@TiO2 and Au@Cu2O/TiO2 catalyst. The acetaldehyde was produced in liquid phase at an almost stoichiometric rate, and C−C cleavage of ethanol molecules to form CH4 or CO2 was greatly inhibited. Extensive spectroscopic results support the claim that Au adjacent to surface Ti3+ defects could be active sites for H2 production and p-n junction of TiO2/Cu2O facilitates photo-generated charge transfer and further dehydrogenation of ethanol to acetaldehyde during the photoreforming.
Collapse
|
10
|
Thakur A, Kumar P, Kaur D, Devunuri N, Sinha RK, Devi P. TiO 2 nanofibres decorated with green-synthesized P Au/Ag@CQDs for the efficient photocatalytic degradation of organic dyes and pharmaceutical drugs. RSC Adv 2020; 10:8941-8948. [PMID: 35496552 PMCID: PMC9050055 DOI: 10.1039/c9ra10804a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 01/31/2020] [Indexed: 01/05/2023] Open
Abstract
Organic pollutants such as dyes and pharmaceutical drugs have become an environmental menace, particularly in water bodies owing to their unregulated discharge. It is thus required to develop an economically viable and environment-friendly approach for their degradation in water bodies. In this study, for the first time, we report green route-synthesized plasmonic nanostructures (PM-CQDs (where M: Au and Ag)) decorated onto TiO2 nanofibers for the treatment of toxic dye- and pharmaceutical drug-based wastewater. PM-CQDs are efficaciously synthesized using carbon quantum dots (CQDs) as the sole reducing and capping agent, wherein CQDs are derived via a green synthesis approach from Citrus limetta waste. The characteristic electron-donating property of CQDs played a key role in the reduction of Au3+ to Au0 and Ag+ to Ag0 under visible light irradiation to obtain PAu-CQDs and PAg-CQDs, respectively. Thus, the obtained CQDs, PAu-CQDs, and PAg-CQDs are loaded onto TiO2 nanofibers to obtain a PM-CQD/TiO2 nanocomposite (NC), and are further probed via transmission electron microscopy, scanning electron microscopy and UV-visible spectrophotometry. The degradation of organic pollutants and pharmaceutical drugs using methylene blue and erythromycin as model pollutants is mapped with UV-vis and NMR spectroscopy. The results demonstrate the complete MB dye degradation in 20 minutes with 1 mg mL-1 of PAu-CQD/TiO2 NC, which otherwise is 30 minutes for PAg@CQD/TiO2 dose under visible light irradiation. Similarly, the pharmaceutical drug was found to degrade in 150 minutes with PAu-CQD/TiO2 photocatalysts. These findings reveal the enhanced photocatalytic performance of the green-synthesized Au decorated with TiO2 nanofibers and are attributed to the boosted SPR effect and aqueous-phase stability of Au nanostructures. This study opens a new domain of utilizing waste-derived and green-synthesized plasmonic nanostructures for the degradation of toxic/hazardous dyes and pharmaceutical pollutants in water.
Collapse
Affiliation(s)
- Anupma Thakur
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
- CSIR-Central Scientific Instruments Organisation Sector-30 C Chandigarh-160030 India
| | - Praveen Kumar
- School of Materials Science, Indian Association for the Cultivation of Science Kolkata-700030 India
| | - Devinder Kaur
- CSIR-Central Scientific Instruments Organisation Sector-30 C Chandigarh-160030 India
| | - Nagaraju Devunuri
- Vignan's Foundation for Science, Technology & Research Guntur Andhra Pradesh - 522213 India
| | - R K Sinha
- CSIR-Central Scientific Instruments Organisation Sector-30 C Chandigarh-160030 India
| | - Pooja Devi
- CSIR-Central Scientific Instruments Organisation Sector-30 C Chandigarh-160030 India
| |
Collapse
|
11
|
Zhang W, Zhang Y, Yang K, Yang Y, Jia J, Guo L. Photocatalytic Performance of SiO 2/CNOs/TiO 2 to Accelerate the Degradation of Rhodamine B under Visible Light. NANOMATERIALS 2019; 9:nano9121671. [PMID: 31771112 PMCID: PMC6955674 DOI: 10.3390/nano9121671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 01/18/2023]
Abstract
A silicon dioxide/carbon nano onions/titanium dioxide (SiO2/CNOs/TiO2) composite was synthesized by a simple sol-gel method and characterized by the methods of X-ray diffraction (XRD), scanning electronic microscope (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), Fourier transform infrared (FTIR), thermogravimetric analysis (TG), differential scanning calorimeter (DSC) and UV-Vis diffuse reflectance spectra (UV-Vis DRS). In this work, the photocatalytic activity of the SiO2/CNOs/TiO2 photocatalyst was assessed by testing the degradation rate of Rhodamine B (RhB) under visible light. The results indicated that the samples exhibited the best photocatalytic activity when the composite consisted of 3% CNOs and the optimum dosage of SiO2/CNOs/TiO2(3%) was 1.5 g/L as evidenced by the highest RhB degradation rate (96%). The SiO2/CNOs/TiO2 composite greatly improved the quantum efficiency of TiO2. This work provides a new option for the modification of subsequent nanocomposite oxide nanoparticles.
Collapse
Affiliation(s)
- Weike Zhang
- School of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (Y.Z.); (J.J.); (L.G.)
- Correspondence: (W.Z.); (Y.Y.)
| | - Yanrong Zhang
- School of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (Y.Z.); (J.J.); (L.G.)
| | - Kai Yang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China;
| | - Yanqing Yang
- School of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (Y.Z.); (J.J.); (L.G.)
- Correspondence: (W.Z.); (Y.Y.)
| | - Jia Jia
- School of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (Y.Z.); (J.J.); (L.G.)
| | - Lijun Guo
- School of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (Y.Z.); (J.J.); (L.G.)
| |
Collapse
|