1
|
Wei Y, Cai Z, Liu Z, Liu C, Kong T, Li Z, Song Y. All-aqueous synthesis of alginate complexed with fibrillated protein microcapsules for membrane-bounded culture of tumor spheroids. Carbohydr Polym 2024; 345:122580. [PMID: 39227124 DOI: 10.1016/j.carbpol.2024.122580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
Water-in-water (W/W) emulsions provide bio-compatible all-aqueous compartments for artificial patterning and assembly of living cells. Successful entrapment of cells within a W/W emulsion via the formation of semipermeable capsules is a prerequisite for regulating on the size, shape, and architecture of cell aggregates. However, the high permeability and instability of the W/W interface, restricting the assembly of stable capsules, pose a fundamental challenge for cell entrapment. The current study addresses this problem by synthesizing multi-armed protein fibrils and controlling their assembly at the W/W interface. The multi-armed protein fibrils, also known as 'fibril clusters', were prepared by cross-linking lysozyme fibrils with multi-arm polyethylene glycol (PEG) via click chemistry. Compared to linear-structured fibrils, fibril clusters are strongly adsorbed at the W/W interface, forming an interconnected meshwork that better stabilizes the W/W emulsion. Moreover, when fibril clusters are complexed with alginate, the hybrid microcapsules demonstrate excellent mechanical robustness, semi-permeability, cytocompatibility and biodegradability. These advantages enable the encapsulation, entrapment and long-term culture of tumor spheroids, with great promise for applications for anti-cancer drug screening, tumor disease modeling, and tissue repair engineering.
Collapse
Affiliation(s)
- Yue Wei
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Zhixiang Cai
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, Zhejiang 314100, China.
| | - Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Changkun Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Tiantian Kong
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518071, China.
| | - Zhiwei Li
- Department of Orthopedic Trauma, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Yang Song
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Nguyen DNT, Nicolai T, Benyahia L. Structure and stabilization of water-in-water emulsions in the presence of two types of microgels. J Colloid Interface Sci 2024; 679:1040-1049. [PMID: 39489132 DOI: 10.1016/j.jcis.2024.10.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
HYPOTHESIS Water-in-water emulsions can be stabilized by colloidal particles that spontaneously adsorb at the interface. Different types of particles have been shown to exhibited different impact on the microstructure and stability. The combination of two different types of particles is expected to show a synergistic effect on the emulsion stability. EXPERIMENTS Synthetic bis-hydrophilic microgels (BIS) and protein microgels (PRO) were studied in emulsions formed by mixing polyethylene oxide (PEO) and Dextran (DEX) as well as in the individual phases. The arrangement of particles at the interface was monitored using confocal laser scanning microscopy and the effect on the microstructure and stability of the emulsions was evaluated during aging. FINDINGS The adsorption and arrangement of particles at the interface depended mainly on their affinity for each phase. Formation of a mixed layer significantly increased the stability of the emulsions compared to emulsions with the individual microgels. BIS and PRO co-aggregated in the PEO phase, which affects their arrangement at the interface and the emulsion stability. In some cases, added BIS spontaneously fully replaced PRO that was adsorbed at the interface.
Collapse
Affiliation(s)
- Do Nhu Trang Nguyen
- IMMM, UMR 6283 CNRS - Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Taco Nicolai
- IMMM, UMR 6283 CNRS - Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| | - Lazhar Benyahia
- IMMM, UMR 6283 CNRS - Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| |
Collapse
|
3
|
Hu J, Yang M, Yuan M, Jiang P, Bao Y, Zhang G. Interfacial Cooperative Assembly of Surfactants and Opposite Wettability Nanoparticles Stabilizes Water-in-Oil Emulsions at High Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19008-19021. [PMID: 39186591 DOI: 10.1021/acs.langmuir.4c01881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Pickering emulsions have promising applications in the development of unconventional oil and gas resources. However, the high-temperature environment of the reservoir is not conducive to the stabilization of Pickering emulsions. In addition, the preparation of Pickering emulsions under low-energy emulsification and low-concentration emulsifier conditions is a difficult challenge. Here, we report a high-temperature resistant water-in-paraffin oil Pickering emulsion, which is synergistically stabilized by polyglycerol ester (PGE) and nanoparticles with opposite wettability (lipophilic silica and hydrophilic alumina). This emulsion can be prepared under mild stirring (500 rpm) conditions and can be stable at 140 °C for at least 30 days. The synergistic effects of surfactant, silicon nanoparticles (MSNPs) with different wettability, and alumina nanoparticles (AONPs) on the stability of both emulsions and water-oil interfacial membranes were investigated through bottle experiments, cryogenic scanning electron microscopy (cryo-SEM), optical microscopy, fluorescence microscopy, etc. The results showed that both hydrophobic MSNPs and hydrophilic AONPs are adsorbed together at the water-oil interface to stabilize the W/O emulsion, which can be prepared by 500 rpm stirring. The stability of emulsions strongly depends on the wettability of MSNPs, and the MSNP with moderate hydrophobicity (for example, aqueous phase contact angle of 136°) makes the emulsion exhibit the highest stability against aggregation and settling at elevated temperatures. The emulsion stabilization mechanism was revealed in terms of the adsorption capacity of the surfactant by MSNPs, the adsorption morphology and desorption energy of nanoparticles at the water-oil interface adsorption layer, and emulsion rheology. These findings demonstrate a novel and simple strategy to prepare Pickering W/O emulsions with high-temperature stability at low shear strength.
Collapse
Affiliation(s)
- Junjie Hu
- College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Menglong Yang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences; Shandong Energy Institute; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Meng Yuan
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences; Shandong Energy Institute; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Ping Jiang
- College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yan Bao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences; Shandong Energy Institute; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Guicai Zhang
- College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
4
|
Waldmann L, Nguyen DNT, Arbault S, Nicolai T, Benyahia L, Ravaine V. Tuning the bis-hydrophilic balance of microgels: A tool to control the stability of water-in-water emulsions. J Colloid Interface Sci 2024; 653:581-593. [PMID: 37738931 DOI: 10.1016/j.jcis.2023.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023]
Abstract
HYPOTHESIS The stability of purely aqueous emulsions (W/W) formed by mixing incompatible polymers, can be achieved through the Pickering effect of particles adsorption at the interface. However, there is, as yet, no guideline regarding the chemical nature of the particles to predict whether they will stabilize a particular W/W emulsion. Bis-hydrophilic soft microgels, made of copolymerized poly(N-isopropylacrylamide) (pNIPAM) and dextran (Dex), act as very efficient stabilizers for PEO/Dextran emulsions, because the two polymers have an affinity for each polymer phase. EXPERIMENTS The ratio between both components of the microgels is varied in order to modulate the bis-hydrophilic balance, the content of Dex compared to pNIPAM varying from 0 to 60 wt%. The partition between the two aqueous phases and the adsorption of microgels at the W/W interface is measured by confocal microscopy. The stability of emulsions is assessed via turbidity measurements and microstructural investigations under sedimentation or compression. FINDINGS The adsorption of particles and their partitioning is found to evolve progressively as a function of bis-hydrophilic balance. At room temperature, the stability of the resulting W/W emulsions also depends on the bis-hydrophilic balance with a maximum of stability for the particles containing 50%wt of Dex, for the Dex-in-PEO emulsions, while the PEO-in-Dex become stable above this value. The thermo-responsiveness of the microgels translates into stability inversion of the emulsions below 50 wt% of Dex in the microgels, whereas above 50 wt%, no emulsion is stable. This work paves the way of a guideline to design efficient and responsive W/W stabilizers.
Collapse
Affiliation(s)
- Léa Waldmann
- Bordeaux INP, ISM, UMR 5255 CNRS - Univ. Bordeaux, F-33400 Talence, France; Univ. Bordeaux, CNRS, Bordeaux INP, CBMN UMR 5248, F-33600 Pessac, France
| | - Do-Nhu-Trang Nguyen
- IMMM, UMR 6283 CNRS - Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France
| | - Stéphane Arbault
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN UMR 5248, F-33600 Pessac, France
| | - Taco Nicolai
- IMMM, UMR 6283 CNRS - Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France
| | - Lazhar Benyahia
- IMMM, UMR 6283 CNRS - Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France
| | - Valérie Ravaine
- Bordeaux INP, ISM, UMR 5255 CNRS - Univ. Bordeaux, F-33400 Talence, France.
| |
Collapse
|
5
|
Hu B, Zhao Y, Ye Z, Wang H. Water-in-Water Emulsions Stabilized by Silica Janus Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206215. [PMID: 36670084 DOI: 10.1002/smll.202206215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Water-in-water (w/w) emulsions have been recognized for their broad applications in foods, cosmetics, and biomedical engineering. In this work, silica Janus nanosheets (JNs) with polyacrylic acid (PAA) chains grafted on one surface via crushing functional silica foams, and used silica JNs as Pickering stabilizer to produce stable water-in-water (w/w) emulsions from the aqueous two-phase system (ATPS) containing methacrylic acid (MAA) and NaCl are prepared. The interfacial area of w/w emulsions increases linearly with the concentration of silica JNs, and the interfacial coverage of nanosheets is calculated to be about 98%. After polymerizing w/w emulsions prepared from MAA/NaCl ATPS, it is found that silica JNs are entrapped at the interface of w/w emulsions with the smooth PAA-grafted surface located toward MAA-rich phase due to their specific interaction. These results show that functional silica JNs can be used as a promising amphiphilic Pickering stabilizer to produce well-defined w/w emulsions for numerous application fields.
Collapse
Affiliation(s)
- Bintao Hu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Yongliang Zhao
- Shanghai Dilato Materials Company Limited, Shanghai, 200433, P. R. China
| | - Zhangfan Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Haitao Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
6
|
Cui W, Xia C, Xu S, Ye X, Wu Y, Cheng S, Zhang R, Zhang C, Miao Z. Water-in-water emulsions stabilized by self-assembled chitosan colloidal particles. Carbohydr Polym 2023; 303:120466. [PMID: 36657862 DOI: 10.1016/j.carbpol.2022.120466] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Dextran (Dex) and poly(ethylene glycol) (PEG)-based aqueous emulsions were stabilized using the self-assembled chitosan colloidal particles (CS CPs). Besides, the effects of pH, CS CPs concentration, polymer concentration, volume ratio of PEG solution to Dex solution, temperature, homogenizing speed and homogenizing time on the property of the W/W emulsions were investigated, respectively. In order to enhance the stability of the PEG-Dex emulsion, sodium tripolyphosphate was used to cross-link the CS CPs at the interface of emulsion droplets, which resulted in the stability duration for >1 year. Finally, the CS CPs were used as a support to immobilize urease and bovine serum albumin and a stabilizer to prepare W/W emulsion, which were then adopted as a catalysis system and as a spinning solution to fabricate drug-loaded nanofiber. This strategy potentially provides a new opportunity to encapsulate the active molecules at the water-water interface, and enrich the types of usable active molecules in the encapsulation in the W/W emulsions.
Collapse
Affiliation(s)
- Wanying Cui
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Chunmiao Xia
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Sheng Xu
- Jushi Group Co., Ltd, No. 669, South Wenhua Road, Tongxiang 314500, China
| | - Xinke Ye
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yihao Wu
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Shukai Cheng
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Rongli Zhang
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| | - Cuige Zhang
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| | - Zongcheng Miao
- Anhui Laboratory of Clean Energy Materials and Chemistry for Sustainable Conversion of Natural Resources, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| |
Collapse
|
7
|
Esquena J. Recent advances on water-in-water emulsions in segregative systems of two water-soluble polymers. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
8
|
Jeyhani M, Navi M, Chan KWY, Kieda J, Tsai SSH. Water-in-water droplet microfluidics: A design manual. BIOMICROFLUIDICS 2022; 16:061503. [PMID: 36406338 PMCID: PMC9674389 DOI: 10.1063/5.0119316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Droplet microfluidics is utilized in a wide range of applications in biomedicine and biology. Applications include rapid biochemical analysis, materials generation, biochemical assays, and point-of-care medicine. The integration of aqueous two-phase systems (ATPSs) into droplet microfluidic platforms has potential utility in oil-free biological and biomedical applications, namely, reducing cytotoxicity and preserving the native form and function of costly biomolecular reagents. In this review, we present a design manual for the chemist, biologist, and engineer to design experiments in the context of their biological applications using all-in-water droplet microfluidic systems. We describe the studies achievable using these systems and the corresponding fabrication and stabilization methods. With this information, readers may apply the fundamental principles and recent advancements in ATPS droplet microfluidics to their research. Finally, we propose a development roadmap of opportunities to utilize ATPS droplet microfluidics in applications that remain underexplored.
Collapse
|
9
|
Xue L, Li H, Pei X, Cui Z, Song B. Pickering Emulsions Synergistically Stabilized by Aliphatic Primary Amines and Silica Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14109-14117. [PMID: 36349864 DOI: 10.1021/acs.langmuir.2c02072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Innovation in emulsion compositions is necessary to enrich emulsion formulations and applications. Herein, Pickering emulsions were prepared using silica nanoparticles and aliphatic primary amines with an oil-water ratio of 1:1 (v/v). Contact angle experiments revealed that the in situ hydrophobization of nanoparticles was caused by the surface adsorption of amine molecules. Notably, the interactions between amine compounds and the surface of silica nanoparticles were electrostatic attractions and mutual hydrogen bonding. The existence of hydrogen bonds was further confirmed by demulsification experiments using a chaotropic agent DMF and increasing temperatures. The hydrophobicity of silica nanoparticles can be effectively improved using most commercially available aliphatic primary amines such as n-hexylamine, n-octylamine, n-decylamine, dodecylamine, and tetradecylamine. The minimum concentrations of the aforementioned amines necessary for stabilizing the emulsions with 0.3 wt % silica nanoparticles are 3, 0.6, 0.3, 0.06, and 0.03 mM, respectively, decreasing significantly with increasing alkyl chain length. With the increase of the amine concentrations, the hydrophobicity of silica particles monotonically increased and finally resulted in the inversion of emulsions. The amine concentrations for emulsion phase inversion were 150, 40, 30, 20, and 20 mM, respectively, in the presence of 0.3 wt % silica nanoparticles. In this work, silica nanoparticles were hydrophobized using aliphatic primary amines. The composite stabilizers developed are useful for developing novel stimuli-responsive Pickering emulsions, while the synergistic effects introduced herein are also helpful in expanding the hydrophobization methods available for nanoparticles.
Collapse
Affiliation(s)
- Linyu Xue
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongye Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaomei Pei
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Binglei Song
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
10
|
Demulsification of (W1+W2+W3)/O Reverse Cerberus Emulsion from Vibrational Emulsification. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Zhou C, Zhu P, Tian Y, Shi R, Wang L. Progress in all-aqueous droplets generation with microfluidics: Mechanisms of formation and stability improvements. BIOPHYSICS REVIEWS 2022; 3:021301. [PMID: 38505416 PMCID: PMC10914135 DOI: 10.1063/5.0054201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 01/27/2022] [Indexed: 03/21/2024]
Abstract
All-aqueous systems have attracted intensive attention as a promising platform for applications in cell separation, protein partitioning, and DNA extraction, due to their selective separation capability, rapid mass transfer, and good biocompatibility. Reliable generation of all-aqueous droplets with accurate control over their size and size distribution is vital to meet the increasingly growing demands in emulsion-based applications. However, the ultra-low interfacial tension and large effective interfacial thickness of the water-water interface pose challenges for the generation and stabilization of uniform all-aqueous droplets, respectively. Microfluidics technology has emerged as a versatile platform for the precision generation of all-aqueous droplets with improved stability. This review aims to systematize the controllable generation of all-aqueous droplets and summarize various strategies to improve their stability with microfluidics. We first provide a comprehensive review on the recent progress of all-aqueous droplets generation with microfluidics by detailing the properties of all-aqueous systems, mechanisms of droplet formation, active and passive methods for droplet generation, and the property of droplets. We then review the various strategies used to improve the stability of all-aqueous droplets and discuss the fabrication of biomaterials using all-aqueous droplets as liquid templates. We envision that this review will benefit the future development of all-aqueous droplet generation and its applications in developing biomaterials, which will be useful for researchers working in the field of all-aqueous systems and those who are new and interested in the field.
Collapse
Affiliation(s)
| | - Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
12
|
Perro A, Coudon N, Chapel JP, Martin N, Béven L, Douliez JP. Building micro-capsules using water-in-water emulsion droplets as templates. J Colloid Interface Sci 2022; 613:681-696. [DOI: 10.1016/j.jcis.2022.01.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/11/2022]
|
13
|
Merland T, Waldmann L, Guignard O, Tatry MC, Wirotius AL, Lapeyre V, Garrigue P, Nicolai T, Benyahia L, Ravaine V. Thermo-induced inversion of water-in-water emulsion stability by bis-hydrophilic microgels. J Colloid Interface Sci 2022; 608:1191-1201. [PMID: 34735854 DOI: 10.1016/j.jcis.2021.10.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
HYPOTHESIS Stabilization of water-in-water (W/W) emulsions resulting from the separation of polymeric phases such as dextran (DEX) and poly(ethyleneoxide) (PEO) is highly challenging, because of the very low interfacial tensions between the two phases and because of the interface thickness extending over several nanometers. In the present work, we present a new type of stabilizers, based on bis-hydrophilic, thermoresponsive microgels, incorporating in the same structure poly(N-isopropylacrylamide) (pNIPAM) chains having an affinity for the PEO phase and dextran moieties. We hypothesize that these particles allow better control of the stability of the W/W emulsions. EXPERIMENTS The microgels were synthesized by copolymerizing the NIPAM monomer with a multifunctional methacrylated dextran. They were characterized by dynamic light scattering, zeta potential measurements and nuclear magnetic resonance as a function of temperature. Microgels with different compositions were tested as stabilizers of droplets of the PEO phase dispersed in the DEX phase (P/D) or vice-versa (D/P), at different concentrations and temperatures. FINDINGS Only microgels with the highest DEX content revealed excellent stabilizing properties for the emulsions by adsorbing at the droplet surface, thus demonstrating the fundamental role of bis-hydrophilicity. At room temperature, both pNIPAM and DEX chains were swollen by water and stabilized better D/P emulsions. However, above the volume phase transition temperature (VPTT ≈ 32 °C) of pNIPAM the microgels shrunk and stabilized better P/D emulsions. At all temperatures, excess microgels partitioned more to the PEO phase. The change in structure and interparticle interaction induced by heating can be exploited to control the W/W emulsion stability.
Collapse
Affiliation(s)
- Théo Merland
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS - Le Mans Université, 1, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Léa Waldmann
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Oksana Guignard
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | | | | | - Véronique Lapeyre
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Patrick Garrigue
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Taco Nicolai
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS - Le Mans Université, 1, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Lazhar Benyahia
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS - Le Mans Université, 1, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| | - Valérie Ravaine
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
| |
Collapse
|
14
|
Chai C, Yi M, Zhang Z, Huang Z, Fan Q, Hao J. Ultra-Sensitive and Ultra-Stretchable Strain Sensors Based on Emulsion Gels with Broad Operating Temperature. Chemistry 2021; 27:13161-13171. [PMID: 34383383 DOI: 10.1002/chem.202101472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Indexed: 11/10/2022]
Abstract
Hydrogels with mechanical elasticity and conductivity are ideal materials in wearable devices. However, traditional hydrogels are fragile upon mechanical loading and lose functions in climate change because the internal water undergoes freeze and dehydration. Herein, we synthesize stable emulsions at high and low temperatures by introducing glycerol into the W/W emulsions. Then the high-stable emulsions are used as templates to produce the freestanding emulsion gels with enhanced mechanical strength and conductivity. The introduction of glycerol endows emulsions and emulsion gels with high and low temperature resistance (-20 to 90 °C). The fabricated strain sensors based on emulsion gels show high sensitivity (gauge factor=6.240), high stretchability (1081 %), fatigue resistance, self-healing and adhesion properties, realizing the repeatable and accurate detection of various human motions. These high-performance and eco-friendly emulsion gels can be promising candidates for next-generation artificial skin and human-machine interface.
Collapse
Affiliation(s)
- Chunxiao Chai
- Key Laboratory of Colloid and Interface Chemistry and, Key Laboratory of Special Functional Materials (Ministry of Education) & State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Mengjiao Yi
- Key Laboratory of Colloid and Interface Chemistry and, Key Laboratory of Special Functional Materials (Ministry of Education) & State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Zhuo Zhang
- Key Laboratory of Colloid and Interface Chemistry and, Key Laboratory of Special Functional Materials (Ministry of Education) & State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Zhaohui Huang
- Key Laboratory of Colloid and Interface Chemistry and, Key Laboratory of Special Functional Materials (Ministry of Education) & State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Qi Fan
- Key Laboratory of Colloid and Interface Chemistry and, Key Laboratory of Special Functional Materials (Ministry of Education) & State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry and, Key Laboratory of Special Functional Materials (Ministry of Education) & State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
15
|
Kumar H, Dugyala VR, Basavaraj MG. Phase Inversion of Ellipsoid-Stabilized Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7295-7304. [PMID: 34100620 DOI: 10.1021/acs.langmuir.1c00456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The efficacy of anisotropic particles in Pickering emulsion stabilization, attributed to shape-induced capillary interactions, is well-documented in the literature. In this contribution, we show that the surface of hematite ellipsoids can be modified in situ by the addition of oleic acid to effect transitional phase inversion of Pickering emulsions. Interestingly, incorporation of oleic acid results in the formation of nonspherical emulsion drops. The phase inversion of oil-in-water to water-in-oil and the transition in shape of emulsion drops from spherical to nonspherical is observed in two different particle systems, namely, nanoellipsoids and microellipsoids. The surface of spherical emulsion drops stabilized by particles or particles along with high concentration of oleic acid is found to consist of ellipsoids arranged in a close-packed configuration with their major axis parallel to the interface. In contrast, at intermediate oleic acid concentration, the surface of nonspherical emulsion drops is observed to be covered with loosely packed particle monolayer, with the ellipsoids at the oil/water interface taking up many different orientations. Using contact angle goniometry, the change in the wettability of hematite particles due to adsorption of oleic acid is established to be the mechanism responsible for the phase inversion of Pickering emulsions.
Collapse
Affiliation(s)
- Hemant Kumar
- Polymer Engineering and Colloid Science(PECS) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai - 600036, Tamil Nadu, India
| | - Venkateshwar Rao Dugyala
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066 Madhya Pradesh, India
| | - Madivala G Basavaraj
- Polymer Engineering and Colloid Science(PECS) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai - 600036, Tamil Nadu, India
| |
Collapse
|
16
|
A new method to prepare microparticles based on an Aqueous Two-Phase system (ATPS), without organic solvents. J Colloid Interface Sci 2021; 599:642-649. [PMID: 33979746 DOI: 10.1016/j.jcis.2021.03.141] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 11/21/2022]
Abstract
HYPOTHESIS Aqueous Two-Phase Systems (ATPS) are aqueous droplets dispersed in an aqueous phase. This specific behavior arises from interactions between at least two water-soluble entities, such as thermodynamically incompatible polymers. A simple, fast, and "green" process to produce ATPS with an aqueous core would be of high interest to the pharmaceutical field for drug delivery. However, to date, rapid destabilization of ATPS represents the main hurdle for their use. Herein we present a novel process to achieve a stabilized microparticle-ATPS, without the use of organic solvents. EXPERIMENTS ATPS composed of dextran and polyethylene oxide were prepared. A Pickering-like emulsion technique was used to stabilize the ATPS by adsorbing semi-solid particles (chitosan-grafted lipid nanocapsules) at the interface between the two aqueous phases. Finally, microparticles were formed by a polyelectrolyte complexation and gelation. The structure and stability of ATPS were characterized using microscopy and Turbiscan analysis. FINDINGS Adding chitosan-grafted lipid nanocapsules induced ATPS stabilization. Adding a polyelectrolyte such as sodium alginate allowed the formation of microparticles with a gelled shell that strengthened the formulation against shear stress and improved long-term stability, thus demonstrating that is possible to use ATPS to form delivery systems to encapsulate hydrophilic molecules.
Collapse
|
17
|
Rowland AT, Keating CD. Formation and properties of liposome-stabilized all-aqueous emulsions based on PEG/dextran, PEG/Ficoll, and PEG/sulfate aqueous biphasic systems. SOFT MATTER 2021; 17:3688-3699. [PMID: 33683232 DOI: 10.1039/d0sm01849j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Vesicle-stabilized all-aqueous emulsion droplets are appealing as bioreactors because they provide uniform encapsulation via equilibrium partitioning without restricting diffusion in and out of the interior. These properties rely on the composition of the aqueous two-phase system (ATPS) chosen for the emulsion and the structure of the interfacial liposome layer, respectively. Here, we explore how changing the aqueous two-phase system from a standard poly(ethyleneglycol), PEG, 8 kDa/dextran 10 kDa ATPS to PEG 8 kDa/Ficoll 70 kDa or PEG 8 kDa/Na2SO4 systems impacts droplet uniformity and partitioning of a model solute (U15 oligoRNA). We also compare liposomes formed by two different methods, both of which begin with multilamellar, polydisperse vesicles formed by gentle hydration: (1) extrusion, which produced vesicles of 150 nm average diameter, and (2) vortexing, which produced vesicles of 270 nm average diameter. Our data illustrate that while droplet uniformity and stability are somewhat better for samples based on extruded vesicles, extrusion is not necessary to create functional microreactors, as emulsions stabilized with vortexed liposomes are just as effective at solute partitioning and allow diffusion across the droplet's liposome corona. This work expands the compositions possible for liposome-stabilized, all-aqueous emulsion droplet bioreactors, making them amenable to a wider range of potential reactions. Replacing the liposome extrusion step with vortexing can reduce time and cost of bioreactor production with only modest reductions in emulsion quality.
Collapse
Affiliation(s)
- Andrew T Rowland
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
18
|
Wang A, Madden LA, Paunov VN. Advanced biomedical applications based on emerging 3D cell culturing platforms. J Mater Chem B 2020; 8:10487-10501. [PMID: 33136103 DOI: 10.1039/d0tb01658f] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is of great value to develop reliable in vitro models for cell biology and toxicology. However, ethical issues and the decreasing number of donors restrict the further use of traditional animal models in various fields, including the emerging fields of tissue engineering and regenerative medicine. The huge gap created by the restrictions in animal models has pushed the development of the increasingly recognized three-dimensional (3D) cell culture, which enables cells to closely simulate authentic cellular behaviour such as close cell-to-cell interactions and can achieve higher functionality. Furthermore, 3D cell culturing is superior to the traditional 2D cell culture, which has obvious limitations and cannot closely mimic the structure and architecture of tissues. In this study, we review several methods used to form 3D multicellular spheroids. The extracellular microenvironment of 3D spheroids plays a role in many aspects of biological sciences, including cell signalling, cell growth, cancer cell generation, and anti-cancer drugs. More recently, they have been explored as basic construction units for tissue and organ engineering. We review this field with a focus on the previous research in different areas using spheroid models, emphasizing aqueous two-phase system (ATPS)-based techniques. Multi-cellular spheroids have great potential in the study of biological systems and can closely mimic the in vivo environment. New technologies to form and analyse spheroids such as the aqueous two-phase system and magnetic levitation are rapidly overcoming the technical limitations of spheroids and expanding their applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Anheng Wang
- Department of Chemistry, University of Hull, Hull, HU6 7RX, UK.
| | | | | |
Collapse
|
19
|
Fedorova MI, Zakhodyaeva YA, Voshkin AA. Interphase Distribution of Fe(III) and Zn(II) in Chloride Systems with Aliquat 336 in Polypropylene Glycol 425. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2020. [DOI: 10.1134/s0040579520030021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
|
21
|
Björkegren S, Freixiela Dias MCA, Lundahl K, Nordstierna L, Palmqvist A. Phase Inversions Observed in Thermoresponsive Pickering Emulsions Stabilized by Surface Functionalized Colloidal Silica. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2357-2367. [PMID: 32075376 DOI: 10.1021/acs.langmuir.9b03648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In this study, the emulsification performance of functionalized colloidal silica is explored with the aim to achieve phase inversion of particle-stabilized (Pickering) emulsion systems. An increased understanding of inversion conditions can facilitate surfactant-free emulsion fabrication and expand its use in industrial applications. Phase inversion was achieved by adjusting the temperature but without changing the composition of the emulsion formulation. Silica nanoparticles modified with hydrophobic propyl groups and hydrophilic methyl poly(ethylene)glycol (mPEG) groups are used as emulsifiers, enabling control of the wettability of the particles and exploration of phase inversion phenomena, the latter due to the thermoresponsiveness of the attached PEG chains. The phase inversion conditions as well as the reversibility of the emulsion systems were examined at varying electrolyte concentrations and pH values of the suspensions. Transitional phase inversions, from oil-in-water and water-in-oil and back, were observed in functionalized silica particle-stabilized butanol emulsions at distinct temperatures. The phase inversion temperature was affected by electrolyte concentration and pH conditions due to salting-out effects, PEG-silica interactions, and the effects of the particle surface charge. Investigations of phase inversion conditions, temperature, and hysteresis effects in Pickering emulsions can improve the theoretical understanding of these phenomena and facilitate the implementation of low-energy emulsion preparation.
Collapse
Affiliation(s)
- Sanna Björkegren
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
- Nouryon Pulp and Performance Chemicals AB, SE-445 80 Bohus, Sweden
| | | | - Kristina Lundahl
- Nouryon Pulp and Performance Chemicals AB, SE-445 80 Bohus, Sweden
| | - Lars Nordstierna
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Anders Palmqvist
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| |
Collapse
|
22
|
Chao Y, Shum HC. Emerging aqueous two-phase systems: from fundamentals of interfaces to biomedical applications. Chem Soc Rev 2020; 49:114-142. [DOI: 10.1039/c9cs00466a] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes recent advances of aqueous two-phase systems (ATPSs), particularly their interfaces, with a focus on biomedical applications.
Collapse
Affiliation(s)
- Youchuang Chao
- Department of Mechanical Engineering
- The University of Hong Kong
- China
| | - Ho Cheung Shum
- Department of Mechanical Engineering
- The University of Hong Kong
- China
| |
Collapse
|