1
|
Ramanthrikkovil Variyam A, Rzycki M, Yucknovsky A, Stuchebrukhov AA, Drabik D, Amdursky N. Proton diffusion on the surface of mixed lipid membranes highlights the role of membrane composition. Biophys J 2024; 123:4200-4210. [PMID: 38961623 PMCID: PMC11700359 DOI: 10.1016/j.bpj.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
Proton circuits within biological membranes, the foundation of natural bioenergetic systems, are significantly influenced by the lipid compositions of different biological membranes. In this study, we investigate the influence of mixed lipid membrane composition on the proton transfer (PT) properties on the surface of the membrane. We track the excited-state PT (ESPT) process from a tethered probe to the membrane with timescales and length scales of PT relevant to bioenergetic systems. Two processes can happen during ESPT: the initial PT from the probe to the membrane at short timescales, followed by diffusion of dissociated protons around the probe on the membrane, and the possible geminate recombination with the probe at longer timescales. Here, we use membranes composed of mixtures of phosphatidylcholine (PC) and phosphatidic acid (PA). We show that the changes in the ESPT properties are not monotonous with the concentration of the lipid mixture; at a low concentration of PA in PC, we find that the membrane is a poor proton acceptor. Molecular dynamics simulations indicate that the membrane is more structured at this specific lipid mixture, with the least number of defects. Accordingly, we suggest that the structure of the membrane is an important factor in facilitating PT. We further show that the composition of the membrane affects the geminate proton diffusion around the probe, whereas, on a timescale of tens of nanoseconds, the dissociated proton is mostly lateral restricted to the membrane plane in PA membranes, while in PC, the diffusion is less restricted by the membrane.
Collapse
Affiliation(s)
| | - Mateusz Rzycki
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Anna Yucknovsky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel
| | | | - Dominik Drabik
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
2
|
Orlikowska M, Wyciszkiewicz A, Węgrzyn K, Mehringer J, de Souza Paiva D, Jurczak P. Methods for monitoring protein-membrane binding. Comparison based on the interactions between amyloidogenic protein human cystatin C and phospholipid liposomes. Int J Biol Macromol 2024; 278:134889. [PMID: 39168225 DOI: 10.1016/j.ijbiomac.2024.134889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/01/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
A cell membrane is an essential cellular component providing protection against the outer environment. It is also a host for proteins and carbohydrates responsible for, e.g. transporter, receptor, or enzymatic functions. In parallel, the membrane may also be implicated in pathological processes leading, e.g. to the oligomerization of amyloid-forming proteins, a hallmark of i.a. Alzheimer's disease. The increasing need for detailed information on mechanisms driving the amyloid formation and the potential role of cell membranes in the process proves the research on protein-membrane interactions biologically relevant. Considering the potential and limitations of the relatively well established and newly developed methods, this study focused on selecting methods that allow a broad and comprehensive description of interactions between amyloidogenic protein human cystatin C and lipid bilayers. In the first step, dot-blot and ELISA tests were selected as techniques allowing fast screening for protein-ligand interactions. Next, surface plasmon resonance, spectral shift, biolayer interferometry, and switchSENSE® technology were used to determine kinetic parameters and binding constants for interactions between human cystatin C and the selected lipid bilayers. Based on the obtained results we have proposed the most promising candidates for monitoring of interactions and determining affinity between amyloidogenic proteins and membrane mimetics.
Collapse
Affiliation(s)
- Marta Orlikowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | | | - Katarzyna Węgrzyn
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| | | | | | - Przemyslaw Jurczak
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; Biomacromolecule Research Team, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama 351-0198, Japan.
| |
Collapse
|
3
|
Zhukov I, Sikorska E, Orlikowska M, Górniewicz-Lorens M, Kepczynski M, Jurczak P. DPPA as a Potential Cell Membrane Component Responsible for Binding Amyloidogenic Protein Human Cystatin C. Molecules 2024; 29:3446. [PMID: 39124852 PMCID: PMC11313537 DOI: 10.3390/molecules29153446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
A phospholipid bilayer is a typical structure that serves crucial functions in various cells and organelles. However, it is not unusual for it to take part in pathological processes. The cell membrane may be a binding target for amyloid-forming proteins, becoming a factor modulating the oligomerization process leading to amyloid deposition-a hallmark of amyloidogenic diseases-e.g., Alzheimer's disease. The information on the mechanisms governing the oligomerization influenced by the protein-membrane interactions is scarce. Therefore, our study aims to describe the interactions between DPPA, a cell membrane mimetic, and amyloidogenic protein human cystatin C. Circular dichroism spectroscopy and differential scanning calorimetry were used to monitor (i) the secondary structure of the human cystatin C and (ii) the phase transition temperature of the DPPA, during the protein-membrane interactions. NMR techniques were used to determine the protein fragments responsible for the interactions, and molecular dynamics simulations were applied to provide a molecular structure representing the interaction. The obtained data indicate that the protein interacts with DPPA, submerging itself into the bilayer via the AS region. Additionally, the interaction increases the content of α-helix within the protein's secondary structure and stabilizes the whole molecule against denaturation.
Collapse
Affiliation(s)
- Igor Zhukov
- Laboratory of Biological NMR, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Emilia Sikorska
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
| | - Marta Orlikowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
| | - Magdalena Górniewicz-Lorens
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (M.G.-L.); (M.K.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Profesora Stanisława Łojasiewicza 11, 30-348 Krakow, Poland
| | - Mariusz Kepczynski
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (M.G.-L.); (M.K.)
| | - Przemyslaw Jurczak
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdansk, 80-307 Gdansk, Poland
- Biomacromolecule Research Team, RIKEN Center for Sustainable Resource Science, Wako-shi 351-0198, Saitama, Japan
| |
Collapse
|
4
|
Chai C, Park J. Food liposomes: Structures, components, preparations, and applications. Food Chem 2024; 432:137228. [PMID: 37633138 DOI: 10.1016/j.foodchem.2023.137228] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023]
Abstract
This review explores liposomes, focusing on their structure, components, the characteristics influencing their stability and applicability in foods, and preparation methods. The role of phospholipids and liposome modulators in preparing liposomes of desired structure and size is emphasized. The potential of liposomes to enhance food value through liposomal encapsulation and delivery of functional substances is reviewed. Conventional and advanced liposome preparation methods are reviewed, underscoring their impact on the marketability of liposomes. The review highlights the need for research into lecithin properties and modulators that enhance liposome stability. The need to develop cost-effective and rapid liposome preparation methods is identified as a key factor in improving the marketability of food liposomes and promoting their use in foods.
Collapse
Affiliation(s)
- Changhoon Chai
- Department of Applied Animal Science, Kangwon National University, Chuncheon-si 24341, Republic of Korea.
| | - Jinhyung Park
- Department of Applied Animal Science, Kangwon National University, Chuncheon-si 24341, Republic of Korea
| |
Collapse
|
5
|
Żak A, Korshunova K, Rajtar N, Kulig W, Kepczynski M. Deciphering Lipid Arrangement in Phosphatidylserine/Phosphatidylcholine Mixed Membranes: Simulations and Experiments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18995-19007. [PMID: 38096496 PMCID: PMC10753890 DOI: 10.1021/acs.langmuir.3c03061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/27/2023]
Abstract
Phosphatidylserine (PS) exposure on the plasma membrane is crucial for many cellular processes including apoptotic cell recognition, blood clotting regulation, cellular signaling, and intercellular interactions. In this study, we investigated the arrangement of PS headgroups in mixed PS/phosphatidylcholine (PC) bilayers, serving as a simplified model of the outer leaflets of mammalian cell plasma membranes. Combining atomistic-scale molecular dynamics (MD) simulations with Langmuir monolayer experiments, we unraveled the mutual miscibility of POPC and POPS lipids and the intricate intermolecular interactions inherent to these membranes as well as the disparities in position and orientation of PC and PS headgroups. Our experiments revealed micrometer-scale miscibility at all mole fractions of POPC and POPS, marked by modest deviations from ideal mixing with no apparent microscale phase separation. The MD simulations, meanwhile, demonstrated that these deviations were due to strong electrostatic interactions between like-lipid pairs (POPC-POPC and POPS-POPS), culminating in lateral segregation and nanoscale clustering. Notably, PS headgroups profoundly affect the ordering of the lipid acyl chains, leading to lipid elongation and subtle PS protrusion above the zwitterionic membrane. In addition, PC headgroups are more tilted with respect to the membrane normal, while PS headgroups align at a smaller angle, making them more exposed to the surface of the mixed PC/PS membranes. These findings provide a detailed molecular-level account of the organization of mixed PC/PS membranes, corroborated by experimental data. The insights gained here extend our comprehension of the physiological role of PSs.
Collapse
Affiliation(s)
- Agata Żak
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Ksenia Korshunova
- Department
of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Natan Rajtar
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Waldemar Kulig
- Department
of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Mariusz Kepczynski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
6
|
Raczyński P, Górny K, Bełdowski P, Marciniak B, Pöschel T, Dendzik Z. Influence of silicon nanocone on cell membrane self-sealing capabilities for targeted drug delivery-Computer simulation study. Arch Biochem Biophys 2023; 749:109802. [PMID: 37913856 DOI: 10.1016/j.abb.2023.109802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Efficient and non-invasive techniques of cargo delivery to biological cells are the focus of biomedical research because of their great potential importance for targeted drug therapy. Therefore, much effort is being made to study the characteristics of using nano-based biocompatible materials as systems that can facilitate this task while ensuring appropriate self-sealing of the cell membrane. Here, we study the effects of indentation and withdrawal of nanocone on phospholipid membrane by applying steered molecular dynamics (SMD) technique. Our results show that the withdrawal process directly depends on the initial position of the nanocone. The average force and work are considerably more significant in case of the withdrawal starting from a larger depth. This result is attributed to stronger hydrophobic interactions between the nanocone and lipid tails of the membrane molecules. Furthermore, when the indenter was started from the lower initial depth, the number of lipids removed from the membrane was several times smaller than the deeper indentation. The choice of the least invasive method for nanostructure-assisted drug delivery is crucial for possible applications in medicine. Therefore, the results presented in this work might be helpful in efficient and safe drug delivery with nanomaterials.
Collapse
Affiliation(s)
- Przemysław Raczyński
- University of Silesia in Katowice, Faculty of Science and Technology, 75 Pułku Piechoty 1A, Chorzów, 41-500, Poland.
| | - Krzysztof Górny
- University of Silesia in Katowice, Faculty of Science and Technology, 75 Pułku Piechoty 1A, Chorzów, 41-500, Poland
| | - Piotr Bełdowski
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas Väg 51, Stockholm, SE-10044, Sweden; Institute of Mathematics and Physics, UTP University of Science and Technology, Bydgoszcz, 85-796, Poland
| | - Beata Marciniak
- Faculty of Telecommunications, Computer Science and Electrical Engineering, UTP University of Science and Technology, Bydgoszcz, 85-796, Poland
| | - Thorsten Pöschel
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnber, IZNF Cauerstraße 3, Erlangen, 91058, Germany
| | - Zbigniew Dendzik
- University of Silesia in Katowice, Faculty of Science and Technology, 75 Pułku Piechoty 1A, Chorzów, 41-500, Poland
| |
Collapse
|
7
|
Guillas I, Lhomme M, Pionneau C, Matheron L, Ponnaiah M, Galier S, Lebreton S, Delbos M, Ma F, Darabi M, Khoury PE, Abifadel M, Couvert P, Giral P, Lesnik P, Guerin M, Le Goff W, Kontush A. Identification of the specific molecular and functional signatures of pre-beta-HDL: relevance to cardiovascular disease. Basic Res Cardiol 2023; 118:33. [PMID: 37639039 DOI: 10.1007/s00395-023-01004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
While low concentrations of high-density lipoprotein-cholesterol (HDL-C) are widely accepted as an independent cardiovascular risk factor, HDL-C-rising therapies largely failed, suggesting the importance of both HDL functions and individual subspecies. Indeed HDL particles are highly heterogeneous, with small, dense pre-beta-HDLs being considered highly biologically active but remaining poorly studied, largely reflecting difficulties for their purification. We developed an original experimental approach allowing the isolation of sufficient amounts of human pre-beta-HDLs and revealing the specificity of their proteomic and lipidomic profiles and biological activities. Pre-beta-HDLs were enriched in highly poly-unsaturated species of phosphatidic acid and phosphatidylserine, and in an unexpectedly high number of proteins implicated in the inflammatory response, including serum paraoxonase/arylesterase-1, vitronectin and clusterin, as well as in complement regulation and immunity, including haptoglobin-related protein, complement proteins and those of the immunoglobulin class. Interestingly, amongst proteins associated with lipid metabolism, phospholipid transfer protein, cholesteryl ester transfer protein and lecithin:cholesterol acyltransferase were strongly enriched in, or restricted to, pre-beta-HDL. Furthermore, pre-beta-HDL potently mediated cellular cholesterol efflux and displayed strong anti-inflammatory activities. A correlational network analysis between lipidome, proteome and biological activities highlighted 15 individual lipid and protein components of pre-beta-HDL relevant to cardiovascular disease, which may constitute novel diagnostic targets in a pathological context of altered lipoprotein metabolism.
Collapse
Affiliation(s)
- Isabelle Guillas
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France.
| | - Marie Lhomme
- Institute of Cardiometabolism and Nutrition (ICAN), ICANalytics Lipidomic, Paris, France
| | - Cédric Pionneau
- Inserm, UMS Production et Analyse des données en Sciences de la vie et en Santé, PASS, Plateforme Post-Génomique de la Pitié-Salpêtrière, P3S, Sorbonne Université, 75013, Paris, France
| | - Lucrèce Matheron
- Institut de Biologie Paris-Seine, Sorbonne Université, 75005, Paris, France
| | - Maharajah Ponnaiah
- Institute of Cardiometabolism and Nutrition (ICAN), ICANalytics Lipidomic, Paris, France
| | - Sophie Galier
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
| | - Sandrine Lebreton
- Université Paris Est Créteil, Université Paris Diderot, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), Sorbonne Université, 75005, Paris, France
| | - Marie Delbos
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
| | - Feng Ma
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
| | - Maryam Darabi
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
| | - Petra El Khoury
- Laboratory of Biochemistry and Molecular Therapeutics, Faculty of Pharmacy, Pôle Technologie-Santé, Saint Joseph University, Beirut, Lebanon
| | - Marianne Abifadel
- Laboratory of Biochemistry and Molecular Therapeutics, Faculty of Pharmacy, Pôle Technologie-Santé, Saint Joseph University, Beirut, Lebanon
- INSERM LVTS U1148, Hôpital Bichat-Claude Bernard, Paris, France
| | - Philippe Couvert
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
- Pôle de Biologie Médicale et Pathologie, Centre de Génétique Moléculaire et Chromosomique, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Paris, France
| | - Philippe Giral
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
| | - Philippe Lesnik
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
| | - Maryse Guerin
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
| | - Wilfried Le Goff
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
| | - Anatol Kontush
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Sorbonne Université, 75013, Paris, France
| |
Collapse
|
8
|
Wang Y, Majd S. Charged Lipids Modulate the Phase Separation in Multicomponent Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11371-11378. [PMID: 37485979 DOI: 10.1021/acs.langmuir.3c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Phase separation in lipid membranes controls the organization of membrane components and thus regulates membrane-mediated processes. Membrane phase behavior is influenced by the molecular properties of its components and their relative concentrations. Charged lipid species are among the most essential components of lipid membranes, and their impact on the membrane phase behavior is yet to be fully understood. Aiming to provide insight into this impact, this paper investigates how the presence and amount of anionic and cationic lipids affect the phase behavior of multicomponent membranes. Membranes of ternary composition DOPC:DPPC:Chol with two distinct molar ratios were used to test the hypothesis that inclusion of charged lipids with saturated tails, beyond a certain concentration, would impede phase separation in an otherwise phase-separating membrane. Fluorescence microscopy examination of electroformed giant liposomes revealed that when more than half of DOPC in the examined mixtures was replaced with DOPA or DOTAP, phase separation in liposomes was somewhat suppressed, and this effect increased with increasing charged lipid content. This effect depended on the membrane surface charge density as the half-maximal effect was observed at around 0.0072 C Å-2 in all examined cases. The phase-separation suppressing effect of DOPA was neutralized when oppositely charged lipid DOTAP was included in the mixture. Likewise, presence of divalent cation Ca2+ in the solution neutralized the impact of negatively charged DOPA. These results underline the detrimental influence of surface charge density on membrane phase behavior. More importantly, these findings suggest that the charged lipid content in membranes may be a regulator of their phase behavior and open new opportunities for the design of synthetic lipid membranes.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Biomedical Engineering, University of Houston, 3551 Cullen Boulevard, Houston, Texas 77204, United States
| | - Sheereen Majd
- Department of Biomedical Engineering, University of Houston, 3551 Cullen Boulevard, Houston, Texas 77204, United States
| |
Collapse
|
9
|
Prabhu J, Singh AP, Vanni S. An in silico osmotic pressure approach allows characterization of pressure-area isotherms of lipid monolayers at low molecular areas. SOFT MATTER 2023; 19:3377-3385. [PMID: 37102755 PMCID: PMC10170484 DOI: 10.1039/d2sm01419j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Surface pressure-area isotherms of lipid monolayers at the air-water interface provide essential information about the structure and mechanical behaviour of lipid membranes. These curves can be readily obtained through Langmuir trough measurements and, as such, have been collected for decades in the field of membrane biochemistry. However, it is still challenging to directly observe and understand nanoscopic features of monolayers through such experiments, and molecular dynamics (MD) simulations are generally used to provide a molecular view of such interfaces. In MD simulations, the surface pressure-area (Π-A) isotherms are generally computed using the Kirkwood-Irving formula, that relies on the evaluation of the pressure tensor. This approach, however, has intrinsic limitations when the molecular area in the monolayer is low (typically < 60 Å2 per lipid). Recently, an alternative method to compute Π-A isotherms of surfactants, based on the calculation of the three-dimensional osmotic pressure via the implementation of semipermeable barriers was proposed. In this work, we investigate the feasibility of this approach for long-chain surfactants such as phospholipids. We identify some discrepancies between the computed values and experimental results, and we propose a semi-empirical correction based on the molecular structure of the surfactants at the monolayer interface. To validate the potential of this new approach, we simulate several phosphatidylcholine and phosphatidylethanolamine lipids at various temperatures using all-atom and coarse-grained force fields, and we compute the corresponding Π-A isotherms. Our results show that the Π-A isotherms obtained using the new method are in very good agreement with experiments and far superior to the canonical pressure tensor-based method at low molecular areas. This corrected osmotic pressure method allows for accurate characterization of the molecular packing in monolayers in various physical phases.
Collapse
Affiliation(s)
- Janak Prabhu
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| | - Akhil Pratap Singh
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| |
Collapse
|
10
|
Żak A, Rajtar N, Kulig W, Kepczynski M. Miscibility of Phosphatidylcholines in Bilayers: Effect of Acyl Chain Unsaturation. MEMBRANES 2023; 13:411. [PMID: 37103838 PMCID: PMC10146409 DOI: 10.3390/membranes13040411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
The miscibility of phospholipids in a hydrated bilayer is an issue of fundamental importance for understanding the organization of biological membranes. Despite research on lipid miscibility, its molecular basis remains poorly understood. In this study, all-atom MD simulations complemented by Langmuir monolayer and DSC experiments have been performed to investigate the molecular organization and properties of lipid bilayers composed of phosphatidylcholines with saturated (palmitoyl, DPPC) and unsaturated (oleoyl, DOPC) acyl chains. The experimental results showed that the DOPC/DPPC bilayers are systems exhibiting a very limited miscibility (strongly positive values of excess free energy of mixing) at temperatures below the DPPC phase transition. The excess free energy of mixing is divided into an entropic component, related to the ordering of the acyl chains, and an enthalpic component, resulting from the mainly electrostatic interactions between the headgroups of lipids. MD simulations showed that the electrostatic interactions for lipid like-pairs are much stronger than that for mixed pairs and temperature has only a slight influence on these interactions. On the contrary, the entropic component increases strongly with increasing temperature, due to the freeing of rotation of acyl chains. Therefore, the miscibility of phospholipids with different saturations of acyl chains is an entropy-driven process.
Collapse
Affiliation(s)
- Agata Żak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Natan Rajtar
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Waldemar Kulig
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Mariusz Kepczynski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
11
|
Asfia S, Seemann R, Fleury JB. Phospholipids diffusion on the surface of model lipid droplets. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184074. [PMID: 36283490 DOI: 10.1016/j.bbamem.2022.184074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
Abstract
Lipid droplets (LD) are organelles localized in the membrane of the Endoplasmic Reticulum (ER) that play an important role in metabolic functions. They consist of a core of neutral lipids surrounded by a monolayer of phosphoplipids and proteins resembling an oil-in-water emulsion droplet. Many studies have focused on the biophysical properties of these LDs. However, despite numerous efforts, we are lacking information on the mobility of phospholipids on the LDs surface, although they may play a key role in the protein distribution. In this article, we developed a microfluidic setup that allows the formation of a triolein-buffer interface decorated with a phospholipid monolayer. Using this setup, we measured the motility of phospholipid molecules by performing Fluorescent Recovery After Photobleaching (FRAP) experiments for different lipidic compositions. The results of the FRAP measurements reveal that the motility of phospholipids is controlled by the monolayer packing decorating the interface.
Collapse
Affiliation(s)
- Shima Asfia
- Universitüt des Saarlandes, Experimental Physics and Center for Biophysics, 66123 Saarbrücken, Germany
| | - Ralf Seemann
- Universitüt des Saarlandes, Experimental Physics and Center for Biophysics, 66123 Saarbrücken, Germany
| | - Jean-Baptiste Fleury
- Universitüt des Saarlandes, Experimental Physics and Center for Biophysics, 66123 Saarbrücken, Germany.
| |
Collapse
|
12
|
Sęk A, Perczyk P, Szcześ A, Machatschek R, Wydro P. Studies on the interactions of tiny amounts of common ionic surfactants with unsaturated phosphocholine lipid model membranes. Chem Phys Lipids 2022; 248:105236. [PMID: 36007625 DOI: 10.1016/j.chemphyslip.2022.105236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/25/2022] [Accepted: 08/19/2022] [Indexed: 01/25/2023]
Abstract
In order to provide the fundamental information about the interactions of common anionic surfactants with the basic unsaturated phospholipids the influence of three cationic (dodecyltrimethylammonium bromide, DTAB; tetradecyltrimethylammonium bromide, TTAB and hexadecyltrimethylamonium bromide, CTAB) and one anionic (sodium dodecylsulfate, SDS) surfactants on the properties of the 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) layers was investigated. The studies proved that a tiny amount of the ionic surfactant added to the already synthesized liposome suspension is sufficient to change the zeta potential of the POPC and DOPC liposomes significantly. This impact increases with the surfactant concentration, the alkyl chain length of the surfactant and the degree of lipid saturation. Moreover, this effect is greater for the anionic surfactant than for the cationic one of the same alkyl chain length. The observed findings were confirmed in the course of the research carried out with the use of the corresponding Langmuir monolayers where the surface pressure - mean area isotherms, the compressibility modulus - surface pressure dependences, the monolayer penetration tests, the surface potential - mean molecular area isotherms and Brewster angle microscopy were discussed. It was found that the presence of the surfactants shifts the isotherms towards larger molecular area, to the higher extent for the SDS than DTAB. This effect increases with the increasing surfactant concentration in the subphase. Moreover, the investigated surfactants remain in the monolayer even at high surface pressure. Nevertheless, no effect on the morphology of the POPC and DOPC monolayers was detected from the BAM images. The surface potential and surface charge of the liposomes calculated on the basis of the zeta potential results reflected the interactions between the surfactant and the lipid layers.
Collapse
Affiliation(s)
- Alicja Sęk
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, M. Curie-Skłodowska 3, Lublin 20-031, Poland
| | - Paulina Perczyk
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| | - Aleksandra Szcześ
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, M. Curie-Skłodowska 3, Lublin 20-031, Poland.
| | - Rainhard Machatschek
- Institute of Active Polymers, Helmholtz-Zentrum Geesthacht and Berlin-Brandenburg Center for Regenerative Therapies, Kantstraße 55, Teltow 14513, Germany
| | - Paweł Wydro
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| |
Collapse
|
13
|
Dogan S, Paulus M, Surmeier G, Foryt K, Brägelmann K, Tolan M. Nondestructive Compression and Fluidization of Phospholipid Monolayers by Gaseous and Aerolized Perfluorocarbons: Promising Substances for Lung Surfactant Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6690-6699. [PMID: 35588471 DOI: 10.1021/acs.langmuir.2c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We present a surface-sensitive X-ray scattering study on the influence of gaseous and aerolized perfluorocarbons (FCs) on zwitterionic and anionic phospholipid Langmuir films, which serve as a simplified model system of lung surfactants. It was found that small gaseous FC molecules like F-propane and F-butane penetrate phospholipid monolayers and accumulate between the alkyl chains and form islands. This clustering process can trigger the formation of lipid crystallites at low initial surface pressures. In contrast, the large linear FC F-octyl bromide fluidizes membranes, causing a dissolution of crystalline domains. The bicyclic FC F-decalin accumulates between the alkyl chains of 1,2-dipalmitoyl phosphatidylcholine but cannot penetrate the more densely packed 1,2-dipalmitoyl phosphatidic acid films because of its size. The effects of FCs on lung surfactants are discussed in the framework of currently proposed therapeutic methods for acute respiratory distress syndrome using FC gases, vapor, or aerosol ventilation causing monolayer fluidization effects. This study implies that the highly biocompatible and nontoxic FCs could be beneficial in the treatment of lung diseases with injured nonfunctional lung surfactants in a novel approach for ventilation.
Collapse
Affiliation(s)
- Susanne Dogan
- Fakultät Physik/DELTA, TU Dortmund, 44221 Dortmund, Germany
| | - Michael Paulus
- Fakultät Physik/DELTA, TU Dortmund, 44221 Dortmund, Germany
| | - Göran Surmeier
- Fakultät Physik/DELTA, TU Dortmund, 44221 Dortmund, Germany
| | - Kevin Foryt
- Fakultät Physik/DELTA, TU Dortmund, 44221 Dortmund, Germany
| | | | - Metin Tolan
- Fakultät Physik/DELTA, TU Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
14
|
Phosphatidic Acid in Plant Hormonal Signaling: From Target Proteins to Membrane Conformations. Int J Mol Sci 2022; 23:ijms23063227. [PMID: 35328648 PMCID: PMC8954910 DOI: 10.3390/ijms23063227] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Cells sense a variety of extracellular signals balancing their metabolism and physiology according to changing growth conditions. Plasma membranes are the outermost informational barriers that render cells sensitive to regulatory inputs. Membranes are composed of different types of lipids that play not only structural but also informational roles. Hormones and other regulators are sensed by specific receptors leading to the activation of lipid metabolizing enzymes. These enzymes generate lipid second messengers. Among them, phosphatidic acid (PA) is a well-known intracellular messenger that regulates various cellular processes. This lipid affects the functional properties of cell membranes and binds to specific target proteins leading to either genomic (affecting transcriptome) or non-genomic responses. The subsequent biochemical, cellular and physiological reactions regulate plant growth, development and stress tolerance. In the present review, we focus on primary (genome-independent) signaling events triggered by rapid PA accumulation in plant cells and describe the functional role of PA in mediating response to hormones and hormone-like regulators. The contributions of individual lipid signaling enzymes to the formation of PA by specific stimuli are also discussed. We provide an overview of the current state of knowledge and future perspectives needed to decipher the mode of action of PA in the regulation of cell functions.
Collapse
|
15
|
Wu J, Chai T, Zhang H, Huang Y, Perry SW, Li Y, Duan J, Tan X, Hu X, Liu Y, Pu J, Wang H, Song J, Jin X, Ji P, Zheng P, Xie P. Changes in gut viral and bacterial species correlate with altered 1,2-diacylglyceride levels and structure in the prefrontal cortex in a depression-like non-human primate model. Transl Psychiatry 2022; 12:74. [PMID: 35194021 PMCID: PMC8863841 DOI: 10.1038/s41398-022-01836-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/02/2023] Open
Abstract
Major depressive disorder (MDD) is a debilitating mental disease, but its underlying molecular mechanisms remain obscure. Our previously established model of naturally occurring depression-like (DL) behaviors in Macaca fascicularis, which is characterized by microbiota-gut-brain (MGB) axis disturbances, can be used to interrogate how a disturbed gut ecosystem may impact the molecular pathology of MDD. Here, gut metagenomics were used to characterize how gut virus and bacterial species, and associated metabolites, change in depression-like monkey model. We identified a panel of 33 gut virus and 14 bacterial species that could discriminate the depression-like from control macaques. In addition, using lipidomic analyses of central and peripheral samples obtained from these animals, we found that the DL macaque were characterized by alterations in the relative abundance, carbon-chain length, and unsaturation degree of 1,2-diacylglyceride (DG) in the prefrontal cortex (PFC), in a brain region-specific manner. In addition, lipid-reaction analysis identified more active and inactive lipid pathways in PFC than in amygdala or hippocampus, with DG being a key nodal player in these lipid pathways. Significantly, co-occurrence network analysis showed that the DG levels may be relevant to the onset of negative emotions behaviors in PFC. Together our findings suggest that altered DG levels and structure in the PFC are hallmarks of the DL macaque, thus providing a new framework for understanding the gut microbiome's role in depression.
Collapse
Affiliation(s)
- Jing Wu
- grid.452206.70000 0004 1758 417XDepartment of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.203458.80000 0000 8653 0555The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016 China
| | - Tingjia Chai
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.203458.80000 0000 8653 0555College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016 China
| | - Hanping Zhang
- grid.452206.70000 0004 1758 417XDepartment of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Yu Huang
- grid.452206.70000 0004 1758 417XDepartment of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Seth W. Perry
- grid.411023.50000 0000 9159 4457Department of Psychiatry and Behavioral Sciences, College of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, New York USA ,grid.411023.50000 0000 9159 4457Department of Neuroscience & Physiology, College of Medicine, SUNY Upstate Medical University, Syracuse, New York USA
| | - Yifan Li
- grid.452206.70000 0004 1758 417XDepartment of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Jiajia Duan
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.203458.80000 0000 8653 0555The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016 China
| | - Xunmin Tan
- grid.452206.70000 0004 1758 417XDepartment of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Xi Hu
- grid.452206.70000 0004 1758 417XDepartment of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Yiyun Liu
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Juncai Pu
- grid.452206.70000 0004 1758 417XDepartment of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Haiyang Wang
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.459985.cChongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147 China
| | - Jinlin Song
- grid.459985.cChongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147 China ,grid.459985.cKey Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Jin
- grid.459985.cChongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147 China ,grid.459985.cKey Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Ji
- grid.459985.cChongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147 China ,grid.459985.cKey Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China. .,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China. .,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
16
|
Sun Y, Liu B, Chen Y, Xing Y, Zhang Y. Multi-Omics Prognostic Signatures Based on Lipid Metabolism for Colorectal Cancer. Front Cell Dev Biol 2022; 9:811957. [PMID: 35223868 PMCID: PMC8874334 DOI: 10.3389/fcell.2021.811957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background: The potential biological processes and laws of the biological components in malignant tumors can be understood more systematically and comprehensively through multi-omics analysis. This study elaborately explored the role of lipid metabolism in the prognosis of colorectal cancer (CRC) from the metabonomics and transcriptomics. Methods: We performed K-means unsupervised clustering algorithm and t test to identify the differential lipid metabolites determined by liquid chromatography tandem mass spectrometry (LC-MS/MS) in the serum of 236 CRC patients of the First Hospital of Jilin University (JLUFH). Cox regression analysis was used to identify prognosis-associated lipid metabolites and to construct multi-lipid-metabolite prognostic signature. The composite nomogram composed of independent prognostic factors was utilized to individually predict the outcome of CRC patients. Glycerophospholipid metabolism was the most significant enrichment pathway for lipid metabolites in CRC, whose related hub genes (GMRHGs) were distinguished by gene set variation analysis (GSVA) and weighted gene co-expression network analysis (WGCNA). Cox regression and least absolute shrinkage and selection operator (LASSO) regression analysis were utilized to develop the prognostic signature. Results: Six-lipid-metabolite and five-GMRHG prognostic signatures were developed, indicating favorable survival stratification effects on CRC patients. Using the independent prognostic factors as variables, we established a composite nomogram to individually evaluate the prognosis of CRC patients. The AUCs of one-, three-, and five-year ROC curves were 0.815, 0.815, and 0.805, respectively, showing auspicious prognostic accuracy. Furthermore, we explored the potential relationship between tumor microenvironment (TME) and immune infiltration. Moreover, the mutational frequency of TP53 in the high-risk group was significantly higher than that in the low-risk group (p < 0.001), while in the coordinate mutational status of TP53, the overall survival of CRC patients in the high-risk group was significantly lower than that in low-risk group with statistical differences. Conclusion: We identified the significance of lipid metabolism for the prognosis of CRC from the aspects of metabonomics and transcriptomics, which can provide a novel perspective for promoting individualized treatment and revealing the potential molecular biological characteristics of CRC. The composite nomogram including a six-lipid-metabolite prognostic signature is a promising predictor of the prognosis of CRC patients.
Collapse
|
17
|
Oliveira AA, Róg T, da Silva ABF, Amaro RE, Johnson MS, Postila PA. Examining the Effect of Charged Lipids on Mitochondrial Outer Membrane Dynamics Using Atomistic Simulations. Biomolecules 2022; 12:183. [PMID: 35204684 PMCID: PMC8961577 DOI: 10.3390/biom12020183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/11/2022] Open
Abstract
The outer mitochondrial membrane (OMM) is involved in multiple cellular functions such as apoptosis, inflammation and signaling via its membrane-associated and -embedded proteins. Despite the central role of the OMM in these vital phenomena, the structure and dynamics of the membrane have regularly been investigated in silico using simple two-component models. Accordingly, the aim was to generate the realistic multi-component model of the OMM and inspect its properties using atomistic molecular dynamics (MD) simulations. All major lipid components, phosphatidylinositol (PI), phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS), were included in the probed OMM models. Because increased levels of anionic PS lipids have potential effects on schizophrenia and, more specifically, on monoamine oxidase B enzyme activity, the effect of varying the PS concentration was explored. The MD simulations indicate that the complex membrane lipid composition (MLC) behavior is notably different from the two-component PC-PE model. The MLC changes caused relatively minor effects on the membrane structural properties such as membrane thickness or area per lipid; however, notable effects could be seen with the dynamical parameters at the water-membrane interface. Increase of PS levels appears to slow down lateral diffusion of all lipids and, in general, the presence of anionic lipids reduced hydration and slowed down the PE headgroup rotation. In addition, sodium ions could neutralize the membrane surface, when PI was the main anionic component; however, a similar effect was not seen for high PS levels. Based on these results, it is advisable for future studies on the OMM and its protein or ligand partners, especially when wanting to replicate the correct properties on the water-membrane interface, to use models that are sufficiently complex, containing anionic lipid types, PI in particular.
Collapse
Affiliation(s)
- Aline A. Oliveira
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093-0340, USA; (A.A.O.); (R.E.A.)
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, São Carlos 13560-970, Brazil;
| | - Tomasz Róg
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland;
| | - Albérico B. F. da Silva
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, São Carlos 13560-970, Brazil;
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093-0340, USA; (A.A.O.); (R.E.A.)
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
- InFLAMES Research Flagship Center, Åbo Akademi University, 20520 Turku, Finland
| | - Pekka A. Postila
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093-0340, USA; (A.A.O.); (R.E.A.)
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
- InFLAMES Research Flagship Center, Åbo Akademi University, 20520 Turku, Finland
- Institute of Biomedicine, Kiinamyllynkatu 10, Integrative Physiology and Pharmacy, University of Turku, FI-20520 Turku, Finland
- Aurlide Ltd., FI-21420 Lieto, Finland
- InFLAMES Research Flagship Center, University of Turku, FI-20520 Turku, Finland
| |
Collapse
|
18
|
Selectivity of mTOR-Phosphatidic Acid Interactions Is Driven by Acyl Chain Structure and Cholesterol. Cells 2021; 11:cells11010119. [PMID: 35011681 PMCID: PMC8750377 DOI: 10.3390/cells11010119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/24/2022] Open
Abstract
The need to gain insights into the molecular details of peripheral membrane proteins’ specificity towards phosphatidic acid (PA) is undeniable. The variety of PA species classified in terms of acyl chain length and saturation translates into a complicated, enigmatic network of functional effects that exert a critical influence on cell physiology. As a consequence, numerous studies on the importance of phosphatidic acid in human diseases have been conducted in recent years. One of the key proteins in this context is mTOR, considered to be the most important cellular sensor of essential nutrients while regulating cell proliferation, and which also appears to require PA to build stable and active complexes. Here, we investigated the specific recognition of three physiologically important PA species by the mTOR FRB domain in the presence or absence of cholesterol in targeted membranes. Using a broad range of methods based on model lipid membrane systems, we elucidated how the length and saturation of PA acyl chains influence specific binding of the mTOR FRB domain to the membrane. We also discovered that cholesterol exerts a strong modulatory effect on PA-FRB recognition. Our data provide insight into the molecular details of some physiological effects reported previously and reveal novel mechanisms of fine-tuning the signaling cascades dependent on PA.
Collapse
|
19
|
Simple Does Not Mean Trivial: Behavior of Phosphatidic Acid in Lipid Mono- and Bilayers. Int J Mol Sci 2021; 22:ijms222111523. [PMID: 34768953 PMCID: PMC8584262 DOI: 10.3390/ijms222111523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 01/21/2023] Open
Abstract
Phosphatidic acid (PA) is one of the simplest membrane phospholipids, yet it plays a crucial role in various biologically relevant processes that take place in cells. Since PA generation may be triggered by a variety of factors, very often of antagonistic character, the specific nature of physiological responses driven by PA is not clear. In order to shed more light on these issues, we carried out a systematic characterization of membranes containing one of the three biologically significant PA molecular species. The effect of these molecules on the properties of membranes composed of phosphatidylcholine and/or cholesterol was assessed in a multidisciplinary approach, including molecular dynamic simulations, flicker noise spectroscopy, and Langmuir monolayer isotherms. The first enables the determination of various macroscopic and microscopic parameters such as lateral diffusion, membrane thickness, and defect analysis. The obtained data revealed a strong interaction between unsaturated PA species and phosphatidylcholine. On the other hand, the behavior of saturated PA was greatly influenced by cholesterol. Additionally, a strong effect on mechanical properties was observed in the case of three-component systems, which could not be explained by the simple extrapolation of parameters of the corresponding two-component systems. Our data show that various PA species are not equivalent in terms of their influence on lipid mono- and bilayers and that membrane composition/properties, particularly those related to the presence of cholesterol, may strongly modulate PA behavior.
Collapse
|
20
|
Abstract
Membrane proteins (MPs) play essential roles in numerous cellular processes. Because around 70% of the currently marketed drugs target MPs, a detailed understanding of their structure, binding properties, and functional dynamics in a physiologically relevant environment is crucial for a more detailed understanding of this important protein class. We here summarize the benefits of using lipid nanodiscs for NMR structural investigations and provide a detailed overview of the currently used lipid nanodisc systems as well as their applications in solution-state NMR. Despite the increasing use of other structural methods for the structure determination of MPs in lipid nanodiscs, solution NMR turns out to be a versatile tool to probe a wide range of MP features, ranging from the structure determination of small to medium-sized MPs to probing ligand and partner protein binding as well as functionally relevant dynamical signatures in a lipid nanodisc setting. We will expand on these topics by discussing recent NMR studies with lipid nanodiscs and work out a key workflow for optimizing the nanodisc incorporation of an MP for subsequent NMR investigations. With this, we hope to provide a comprehensive background to enable an informed assessment of the applicability of lipid nanodiscs for NMR studies of a particular MP of interest.
Collapse
Affiliation(s)
- Umut Günsel
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Strasse 2, 85748 Garching, Germany
| | - Franz Hagn
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Strasse 2, 85748 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
21
|
Roberts MF, Cai J, V Natarajan S, Khan HM, Reuter N, Gershenson A, Redfield AG. Phospholipids in Motion: High-Resolution 31P NMR Field Cycling Studies. J Phys Chem B 2021; 125:8827-8838. [PMID: 34320805 DOI: 10.1021/acs.jpcb.1c02105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diverse phospholipid motions are key to membrane function but can be quite difficult to untangle and quantify. High-resolution field cycling 31P NMR spin-lattice relaxometry, where the sample is excited at high field, shuttled in the magnet bore for low-field relaxation, then shuttled back to high field for readout of the residual magnetization, provides data on phospholipid dynamics and structure. This information is encoded in the field dependence of the 31P spin-lattice relaxation rate (R1). In the field range from 11.74 down to 0.003 T, three dipolar nuclear magnetic relaxation dispersions (NMRDs) and one due to 31P chemical shift anisotropy contribute to R1 of phospholipids. Extraction of correlation times and maximum relaxation amplitudes for these NMRDs provides (1) lateral diffusion constants for different phospholipids in the same bilayer, (2) estimates of how additives alter the motion of the phospholipid about its long axis, and (3) an average 31P-1H angle with respect to the bilayer normal, which reveals that polar headgroup motion is not restricted on a microsecond timescale. Relative motions within a phospholipid are also provided by comparing 31P NMRD profiles for specifically deuterated molecules as well as 13C and 1H field dependence profiles to that of 31P. Although this work has dealt exclusively with phospholipids in small unilamellar vesicles, these same NMRDs can be measured for phospholipids in micelles and nanodisks, making this technique useful for monitoring lipid behavior in a variety of structures and assessing how additives alter specific lipid motions.
Collapse
Affiliation(s)
- Mary F Roberts
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jingfei Cai
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Sivanandam V Natarajan
- Department of Biochemistry and the Rosenstiel Basic Medical Sciences Research Institute, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Hanif M Khan
- Department of Molecular Biology and Computational Biology Unit, Department of Informatics, University of Bergen, 5020 Bergen, Norway
| | - Nathalie Reuter
- Department of Molecular Biology and Computational Biology Unit, Department of Informatics, University of Bergen, 5020 Bergen, Norway
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Alfred G Redfield
- Department of Biochemistry and the Rosenstiel Basic Medical Sciences Research Institute, Brandeis University, Waltham, Massachusetts 02454, United States
| |
Collapse
|
22
|
Yang J, Jin J, Li S. Role of polyunsaturated phospholipids in liquid-ordered and liquid-disordered phases. RSC Adv 2021; 11:27115-27120. [PMID: 35480686 PMCID: PMC9037819 DOI: 10.1039/d1ra02692e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/30/2021] [Indexed: 11/21/2022] Open
Abstract
Polyunsaturated phospholipids play a strong repulsive role in the liquid-disordered phase but a weak role in the liquid-ordered phase.
Collapse
Affiliation(s)
- Jing Yang
- College of Education, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Jianyu Jin
- College of Education, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Shiben Li
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
23
|
Tanguy E, Wolf A, Montero-Hadjadje M, Gasman S, Bader MF, Vitale N. Phosphatidic acid: Mono- and poly-unsaturated forms regulate distinct stages of neuroendocrine exocytosis. Adv Biol Regul 2020; 79:100772. [PMID: 33288473 DOI: 10.1016/j.jbior.2020.100772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Lipids have emerged as important actors in an ever-growing number of key functions in cell biology over the last few years. Among them, glycerophospholipids are major constituents of cellular membranes. Because of their amphiphilic nature, phospholipids form lipid bilayers that are particularly useful to isolate cellular content from the extracellular medium, but also to define intracellular compartments. Interestingly, phospholipids come in different flavors based on their fatty acyl chain composition. Indeed, lipidomic analyses have revealed the presence in cellular membranes of up to 50 different species of an individual class of phospholipid, opening the possibility of multiple functions for a single class of phospholipid. In this review we will focus on phosphatidic acid (PA), the simplest phospholipid, that plays both structural and signaling functions. Among the numerous roles that have been attributed to PA, a key regulatory role in secretion has been proposed in different cell models. We review here the evidences that support the idea that mono- and poly-unsaturated PA control distinct steps in hormone secretion from neuroendocrine cells.
Collapse
Affiliation(s)
- Emeline Tanguy
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| | - Alexander Wolf
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| | - Maité Montero-Hadjadje
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, 76000, Rouen, France
| | - Stéphane Gasman
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| | - Marie-France Bader
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| | - Nicolas Vitale
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France.
| |
Collapse
|
24
|
Peppino Margutti M, Wilke N, Villasuso AL. Influence of Ca 2+ on the surface behavior of phosphatidic acid and its mixture with diacylglycerol pyrophosphate at different pHs. Chem Phys Lipids 2020; 228:104887. [PMID: 32027867 DOI: 10.1016/j.chemphyslip.2020.104887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/13/2019] [Accepted: 01/30/2020] [Indexed: 01/13/2023]
Abstract
The signaling lipids phosphatidic acid (PA) and diacylglycerol pyrophosphate (DGPP) are involved in regulating the stress response in plants. PA and DGPP are anionic lipids consisting of a negatively charged phosphomonoester or pyrophosphate group attached to diacylglycerol, respectively. Changes in the pH modulate the protonation of their head groups modifying the interaction with other effectors. Here, we examine in a controlled system how the presence of Ca2+ modulates the surface organization of dioleyl diacylglycerol pyrophosphate (DGPP) and its interaction with dioleoyl phosphatidic acid (DOPA) at different pHs. Both lipids formed expanded monolayers at pH 5 and 8. At acid and basic pHs, monolayers formed by DOPA or DGPP became denser when Ca2+ was added to the subphase. At pH 5, Ca2+ also induced an increase of surface potential of both lipids. Conversely, at pH 8 the effects induced by the presence of Ca2+ on the surface potential were reversed. Mixed monolayers of DOPA and DGPP showed a non-ideal behavior. The addition of even tiny amounts of DGPP to DOPA films caused a reduction of the mean molecular area. This effect was more evident at pH 8 compared to pH 5. Our finding suggests that low amounts of DGPP in an film enriched in DOPA could lead to a local increase in film packing with a concomitant change in the local polarization, further regulated by local pH. This fact may have implications for the assigned role of PA as a pH-sensing phospholipid or during its interaction with proteins.
Collapse
Affiliation(s)
- Micaela Peppino Margutti
- Universidad Nacional de Río Cuarto, FCEFQyN, Departamento de Biología Molecular, Río Cuarto, Argentina
| | - Natalia Wilke
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina; CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Ana Laura Villasuso
- Universidad Nacional de Río Cuarto, FCEFQyN, Departamento de Biología Molecular, Río Cuarto, Argentina; CONICET, Universidad Nacional de Río Cuarto, Instituto de Biotecnologia Ambiental y Salud, (INBIAS), Río Cuarto, Argentina.
| |
Collapse
|
25
|
Khairalla B, Juhaniewicz-Debinska J, Sek S, Brand I. The shape of lipid molecules affects potential-driven molecular-scale rearrangements in model cell membranes on electrodes. Bioelectrochemistry 2019; 132:107443. [PMID: 31869700 DOI: 10.1016/j.bioelechem.2019.107443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/24/2022]
Abstract
Planar asymmetric lipid bilayers composed of phosphatidylethanolamine and phosphatidylglycerol lipids are transferred onto a gold electrode surface. Lipids containing two saturated, one monounsaturated and two monounsaturated hydrocarbon chains compose the model membranes. Results of electrochemically controlled polarization modulation infrared reflection absorption spectroscopy and quartz crystal microbalance with energy dissipation studies reveal two different types of electric potential-dependent structural rearrangements in the bilayers. They are correlated with the geometry of the lipid molecule. Packing parameter correlates the cross-section area of the hydrophobic and hydrophilic parts of amphiphilic molecules. In bilayers composed of lipids with the packing parameter <1, the hydrocarbon chains are tilted with respect to the bilayer plane and the polar head groups are well hydrated. At a threshold potential an abrupt flow of water through the bilayer is connected with membrane dehydration and upward orientation of the chains. In bilayers composed of lipids with packing parameter ≥1, electric potentials have negligible effect on the membrane structure. A simple rule correlating the packing parameter with molecular scale changes occurring at electrified membranes has a large diagnostic implication for biomimetic studies and our understanding of molecular processes occurring in biological cell membranes.
Collapse
Affiliation(s)
- Bishoy Khairalla
- Department of Chemistry, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany
| | - Joanna Juhaniewicz-Debinska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02089 Warsaw, Poland
| | - Slawomir Sek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02089 Warsaw, Poland
| | - Izabella Brand
- Department of Chemistry, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany.
| |
Collapse
|
26
|
A Perspective: Active Role of Lipids in Neurotransmitter Dynamics. Mol Neurobiol 2019; 57:910-925. [PMID: 31595461 PMCID: PMC7031182 DOI: 10.1007/s12035-019-01775-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/01/2019] [Indexed: 12/30/2022]
Abstract
Synaptic neurotransmission is generally considered as a function of membrane-embedded receptors and ion channels in response to the neurotransmitter (NT) release and binding. This perspective aims to widen the protein-centric view by including another vital component—the synaptic membrane—in the discussion. A vast set of atomistic molecular dynamics simulations and biophysical experiments indicate that NTs are divided into membrane-binding and membrane-nonbinding categories. The binary choice takes place at the water-membrane interface and follows closely the positioning of the receptors’ binding sites in relation to the membrane. Accordingly, when a lipophilic NT is on route to a membrane-buried binding site, it adheres on the membrane and, then, travels along its plane towards the receptor. In contrast, lipophobic NTs, which are destined to bind into receptors with extracellular binding sites, prefer the water phase. This membrane-based sorting splits the neurotransmission into membrane-independent and membrane-dependent mechanisms and should make the NT binding into the receptors more efficient than random diffusion would allow. The potential implications and notable exceptions to the mechanisms are discussed here. Importantly, maintaining specific membrane lipid compositions (MLCs) at the synapses, especially regarding anionic lipids, affect the level of NT-membrane association. These effects provide a plausible link between the MLC imbalances and neurological diseases such as depression or Parkinson’s disease. Moreover, the membrane plays a vital role in other phases of the NT life cycle, including storage and release from the synaptic vesicles, transport from the synaptic cleft, as well as their synthesis and degradation.
Collapse
|
27
|
Bozelli JC, Yune J, Hou YH, Chatha P, Fernandes A, Cao Z, Tong Y, Epand RM. Regulation of DGKε Activity and Substrate Acyl Chain Specificity by Negatively Charged Phospholipids. Biophys J 2019; 118:957-966. [PMID: 31587830 DOI: 10.1016/j.bpj.2019.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 01/09/2023] Open
Abstract
Diacylglycerol kinase ε (DGKε) is a membrane-bound enzyme that catalyzes the ATP-dependent phosphorylation of diacylglycerol to form phosphatidic acid (PA) in the phosphatidylinositol cycle. DGKε lacks a putative regulatory domain and has recently been reported to be regulated by highly curved membranes. To further study the effect of other membrane properties as a regulatory mechanism of DGKε, our work reports the effect of negatively charged phospholipids on DGKε activity and substrate acyl chain specificity. These studies were conducted using purified DGKε and detergent-free phospholipid aggregates, which present a more suitable model system to access the impact of membrane physical properties on membrane-active enzymes. The structural properties of the different model membranes were studied by means of differential scanning calorimetry and 31P-NMR. It is shown that the enzyme is inhibited by a variety of negatively charged phospholipids. However, PA, which is a negatively charged phospholipid and the product of DGKε catalyzed reaction, showed a varied regulatory effect on the enzyme from being an activator to an inhibitor. The type of feedback regulation of DGKε by PA depends on the particular PA molecular species as well as the physical properties of the membrane that the enzyme binds to. In the presence of highly packed PA-rich domains, the enzyme is activated. However, its acyl chain specificity is only observed in liposomes containing 1,2-dioleoyl PA in the presence of Ca2+. It is proposed that to endow the enzyme with its substrate acyl chain specificity, a highly dehydrated (hydrophobic) membrane interface is needed. The presence of an overlap of mechanisms to regulate DGKε ensures proper phosphatidylinositol cycle function regardless of the trigged stimulus and represents a sophisticated and specialized manner of membrane-enzyme regulation.
Collapse
Affiliation(s)
- José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, Ontario, Canada
| | - Jenny Yune
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, Ontario, Canada
| | - You H Hou
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, Ontario, Canada
| | - Preet Chatha
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, Ontario, Canada
| | - Alexia Fernandes
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, Ontario, Canada
| | - Zihao Cao
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, Ontario, Canada
| | - Yufeng Tong
- Structural Genomics Consortium, Toronto, Ontario, Canada; Department of Chemistry and Biochemistry, University of Windsor, Ontario, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
28
|
Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. Phosphatidic acid in membrane rearrangements. FEBS Lett 2019; 593:2428-2451. [PMID: 31365767 DOI: 10.1002/1873-3468.13563] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022]
Abstract
Phosphatidic acid (PA) is the simplest cellular glycerophospholipid characterized by unique biophysical properties: a small headgroup; negative charge; and a phosphomonoester group. Upon interaction with lysine or arginine, PA charge increases from -1 to -2 and this change stabilizes protein-lipid interactions. The biochemical properties of PA also allow interactions with lipids in several subcellular compartments. Based on this feature, PA is involved in the regulation and amplification of many cellular signalling pathways and functions, as well as in membrane rearrangements. Thereby, PA can influence membrane fusion and fission through four main mechanisms: it is a substrate for enzymes producing lipids (lysophosphatidic acid and diacylglycerol) that are involved in fission or fusion; it contributes to membrane rearrangements by generating negative membrane curvature; it interacts with proteins required for membrane fusion and fission; and it activates enzymes whose products are involved in membrane rearrangements. Here, we discuss the biophysical properties of PA in the context of the above four roles of PA in membrane fusion and fission.
Collapse
Affiliation(s)
- Mikhail A Zhukovsky
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Angela Filograna
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Carmen Valente
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|