The Dispersion and Coagulation of Negatively Charged Ca2Nb3O10 Perovskite Nanosheets in Sodium Alginate Dispersion.
NANOMATERIALS 2022;
12:nano12152591. [PMID:
35957020 PMCID:
PMC9370453 DOI:
10.3390/nano12152591]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023]
Abstract
Chemically exfoliated nanosheets have been extensively employed as functional nanofillers for the fabrication of polymer nanocomposites due to their remarkable electrical, magnetic and optical properties. However, achieving a good dispersion of charged nanosheets in polymer matrix, which will determine the performance of polymer nanocomposites, remains a challenge. Herein, we investigated the dispersion and aggregation behavior of negatively charged Ca2Nb3O10 (CNO) perovskite nanosheets in negatively charged sodium alginate (SA) aqueous dispersion using dynamic light scattering (DLS). When CNO nanosheets meet with SA, aggregation and coagulation inevitably occurred owing to the absorption of SA on nanosheets. By controlling the electrostatic attraction between positively charged poly(ethylene imine) (PEI) and negatively charged SA, the charge density and hydrodynamic size of SA can be tuned to enable the good dispersion of CNO nanosheets in SA. This result may provide a new strategy to achieve the good dispersion of charged nanosheets in charged polymers for the rational design of multifunctional nanocomposites.
Collapse